首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The formulation of the Casimir effect without cutoffs is discussed. Our derivation emphasizes the decisive role of the free-space electromagnetic energy density. The zero point energy arises as an energy per unit volume, i.e., as local (in x space) energy density. It is given by the vaccum expectation value of the free-space Hamiltonian density in the Fock representation corresponding to the non-trivial geometry. The two Fock representations corresponding to the system with and without plates are proved to be inequivalent.  相似文献   

2.
研究以同轴不同半径柱面围成的导体柱环腔体中电磁场真空零点振动模式所给出的宏观量子效应.零点振动模式通过求解柱环空腔边界条件下无源的Maxwell方程组获得.得到了双柱面同心柱环中单位长度和单位面积的且是有限的真空能量,即Casimir能量.这有限的Casimir能量可以分解为独立而且收敛的三部分,它们分别来自内柱面、外柱面和柱环之中.对多柱面同心柱环,Casimir能量可分解为独立的(2n—1)部分(n为柱面数).柱环是类似于平行板的几何结构.但柱环所给出的Casimir能量和Casimir势能系数是随着 关键词: Casimir效应 柱环腔体 零点能 量子电动力学  相似文献   

3.
苗兵 《物理学报》2020,(8):92-98
量子电动力学中的卡西米尔力是真空零点能的体现.广义的卡西米尔力则依赖于涨落介质的类型广泛地出现于物理中,包括量子,临界,戈德斯通模,以及非平衡卡西米尔力.长程关联的涨落介质和约束是产生卡西米尔力的两个条件.本文通过回顾卡西米尔物理的发展,讨论了不同类型的卡西米尔力,几种正规化方法,并对卡西米尔物理的进一步发展做了展望.  相似文献   

4.
The theory of the Casimir effect, including its temperature dependence, is rederived by source theoretic methods, which do not employ the concept of zero point energy.Support in part by the National Science Foundation.  相似文献   

5.
《Nuclear Physics B》2006,743(3):249-275
We recently proposed a new approach to the Casimir effect based on classical ray optics (the “optical approximation”). In this paper we show how to use it to calculate the local observables of the field theory. In particular, we study the energy–momentum tensor and the Casimir pressure. We work three examples in detail: parallel plates, the Casimir pendulum and a sphere opposite a plate. We also show how to calculate thermal corrections, proving that the high temperature ‘classical limit’ is indeed valid for any smooth geometry.  相似文献   

6.
In a cosmological setting, Kaluza-Klein heavy modes can decouple. One can then treat them as “dust” in a 4D effective picture, even when these particles are massless from a higher dimensional point of view. We find cosmological solutions with decoupled heavy modes considering toroidal compactification for the extra dimensions and also the Casimir effect induced by the compactification.  相似文献   

7.
Abstract

Quantum Electrodynamics (QED) has been extremely successful inits predictive capability for atomic phenomena. Thus the greatest hope for any alternative view is solely to mimic the predictive capability of quantum mechanics (QM), and perhaps its usefulness will lie in gaining a better understanding of microscopic phenomena. Many “paradoxes” and problematic situations emerge in QED. To combat the QED problems, the field of Stochastics Electrodynamics (SE) emerged, wherein a random “zero point radiation” is assumed to fill all of space in an attmept to explain quantum phenomena, without some of the paradoxical concerns. SE, however, has greater failings. One is that the electromagnetic field energy must be infinit eto work. We have examined a deterministic side branch of SE, “self field” electrodynamics, which may overcome the probelms of SE. Self field electrodynamics (SFE) utilizes the chaotic nature of electromagnetic emissions, as charges lose energy near atomic dimensions, to try to understand and mimic quantum phenomena. These fields and charges can “interact with themselves” in a non-linear fashion, and may thereby explain many quantum phenomena from a semi-classical viewpoint. Referred to as self fields, they have gone by other names in the literature: “evanesccent radiation”, “virtual photons”, and “vacuum fluctuations”. Using self fields, we discuss the uncertainty principles, the Casimir effects, and the black-body radiation spectrum, diffraction and interference effects, Schrodinger's equation, Planck's constant, and the nature of the electron and how they might be understood in the present framework. No new theory could ever replace QED. The self field view (if correct) would, at best, only serve to provide some understanding of the processes by which strange quantum phenomena occur at the atomic level. We discuss possible areas where experiments might be employed to test SFE, and areas where future work may lie.  相似文献   

8.
The thermal Casimir effect in ideal metal rectangular boxes is considered using the method of zeta functional regularization. A renormalization procedure is suggested which provides the finite expression for the Casimir free energy in any restricted quantization volume. This expression satisfies the classical limit at high temperature and leads to zero thermal Casimir force for systems with infinite characteristic dimensions. In the case of two parallel ideal metal planes the results, as derived previously using thermal quantum field theory in Matsubara formulation and other methods, are reproduced starting from the expression obtained. It is shown that for rectangular boxes the temperature-dependent contribution to the electromagnetic Casimir force can be both positive and negative depending on side lengths. Numerical computations of the scalar and electromagnetic Casimir free energy and force are performed for cubes.  相似文献   

9.
The stability of the mesoscopic multilayer structure resulting from the Casimir effect is investigated. For the multilayer structure composed of periodic metal and metamaterial layers, we focus on the formation of the restoring Casimir forces that simultaneously stably equilibrate each layer of the structure with the suitably chosen frequency-dependent electromagnetic properties of the materials. The stable equilibrium distances for the layers are discussed, and the influences of the metamaterial characteristic frequencies and of the layer thickness are shown. Since the system stability is induced only by the Casimir forces, this mesoscopic multilayer can be considered as a stable non-touching “Casimir solid”.  相似文献   

10.
The energy-momentum tensor for the gravitoelectromagnetism-(GEM) theory in the real-time finite temperature field theory formalism is presented. Expressions for the Casimir energy and pressure at zero and finite temperature are obtained. An analysis of the Casimir effect for the GEM field is developed.  相似文献   

11.
The canonical quantization of the photon field in covariant gauge is studied in the presence of static boundaries, on which the field satisfies either “bag” or superconductor boundary conditions. The inclusion of the Fadeev-Popov ghost fields is found to be essential for agreement with Coulomb gauge calculations of the Casimir energy.  相似文献   

12.
The general method to calculate Casimir forces using Source Theory is reviewed. Included are such issues as point splitting, high frequency cut-offs and the inclusion of temperature. The details of calculations for planar, spherical and cylindrical geometries are presented. Finally, assuming spin zero photons, the Casimir force between perfectly conducting spheres is calculated. The large distance behavior is found to be proportional to the inverse distance to the fourth power, unlike the spin one behavior of to the eighth power.  相似文献   

13.
We propose a method for the detection of a dynamical Casimir effect. Assuming that the Casimir photons are being generated in an electromagnetic cavity with a vibrating wall (dynamical Casimir effect), we consider electrons passing through the cavity to be interacting with the intracavity field. We show that the dynamical Casimir effect can be observed via the measurement of the change in the average or in the variance of the electron’s kinetic energy. We point out that the enhancement of the effect due to finite temperatures makes it easier to detect the Casimir photons.  相似文献   

14.
The Casimir stress on a perfectly conducting uncharged sphere, due to occurrence of fluctuations in the electromagnetic field, is calculated using a source theory formulation. Two independent methods are employed: we compute (1) the total Casimir energy inside and outside the sphere, and (2) the radial component of the stress tensor on the surface. It is necessary to exercise care in allowing the field points to overlap; a correct limiting procedure supplies a “cutoff” in the frequency integration. In spite of numerous technical improvements, the result of Boyer, that the self-stress is repulsive (and not attractive as Casimir hoped), is confirmed unambiguously. The magnitude of the Casimir energy of a sphere of radius a is found, by numerical and analytic techniques, to be E = (h?c2a)(0.09235), also in agreement with the very recent result of Balian and Duplantier.  相似文献   

15.
The Casimir effect is highly dependent on the shape and structure of space boundaries. This dependence is encoded in the variation of vacuum energy with the different types of boundary conditions. We analyze from a global perspective the properties of the Casimir energy as a function on the largest space of the consistent boundary conditions MF\mathcal{M}_{F} for a massless scalar field confined between to homogeneous parallel plates. In particular, we analyze the analytic properties of this function and point out the existence of a third order phase transition at periodic boundary conditions. We also characterize the boundary conditions which give rise to attractive or repulsive Casimir forces. In the interface between both regimes we find a very interesting family of boundary conditions without Casimir effect, and fully characterize the boundary conditions which do not induce any type of Casimir force.  相似文献   

16.
《Nuclear Physics B》2005,726(3):441-463
We consider a five-layer Casimir cavity, including a thin superconducting film. We show that when the cavity is cooled below the critical temperature for the onset of superconductivity, the sharp variation (in the microwave region) of the reflection coefficient of the film produces a variation in the value of the Casimir energy. Even though the relative variation in the Casimir energy is very small, its magnitude can be comparable to the condensation energy of the superconducting film, and thus causes a significant increase in the value of the critical magnetic field, required to destroy the superconductivity of the film. The proposed scheme might also help clarifying the current controversy about the magnitude of the contribution to Casimir free energy from the TE zero mode, as we find that alternative treatments of this mode strongly affect the shift of critical field.  相似文献   

17.
A complete thermodynamic treatment of the Casimir effect is presented. Explicit expressions for the free and the internal energy, the entropy and the pressure are discussed. As an example we consider the Casimir effect with different temperatures between the plates (T) resp. outside of them (T'). For T'<T the pressure of heat radiation can eventually compensate the Casimir force and the total pressure can vanish. We consider both an isothermal and an adiabatic treatment of the interior region. The equilibrium point (vanishing pressure) turns out instable in the isothermal case. In the adiabatic situation we have both an instable and a stable equilibrium point, if T'/T is sufficiently small. Quantitative aspects are briefly discussed. Received 24 February 1999 and Received in final form 26 April 1999  相似文献   

18.
The effect of excitation of an atom in an initially photon-free nonstationary cavity is predicted. Two excitation mechanisms are considered, both different from the trivial absorption of photons created due to the nonstationary Casimir effect. The first one is based on the fact that the photon states appear simultaneously with atomic excitation if the characteristic time of cavity nonstationarity is of the same order as the atomic transition time. The second one is associated with the “shake-up” effect caused by the modulation of the atomic ground-state Lamb shift upon a fast change in the cavity parameters. The presence of an atom in the nonstationary cavity affects the photon creation process. In particular, it changes the average number of generated photons and removes the constraint (inherent in the nonstationary Casimir effect) that only an even number of photons can be created. In addition, a new mechanism of photon generation associated with the shake-up effect appears.  相似文献   

19.
We show the influence of surface plasmons on the Casimir effect between two plane parallel metallic mirrors at arbitrary distances. Using the plasma model to describe the optical response of the metal, we express the Casimir energy as a sum of contributions associated with evanescent surface plasmon modes and propagative cavity modes. In contrast to naive expectations, the plasmonic mode contribution is essential at all distances in order to ensure the correct result for the Casimir energy. One of the two plasmonic modes gives rise to a repulsive contribution, balancing out the attractive contributions from propagating cavity modes, while both contributions taken separately are much larger than the actual value of the Casimir energy. This also suggests possibilities to tailor the sign of the Casimir force via surface plasmons.  相似文献   

20.
The Casimir energy of a solid ball (or cavity in an infinite medium) is calculated by a direct frequency summation using contour integration. The dispersion is taken into account, and the divergences are removed by making use of the zeta function technique. The Casimir energy of a dielectric ball (or cavity) turns out to be positive and increasing as the radius of the ball decreases. The latter eliminates completely the possibility of explaining, via the Casimir effect, the sonoluminescence for bubbles in a liquid. Besides, the Casimir energy of the air bubbles in water proves to be immensely smaller than the amount of the energy emitted in a sonoluminescent flash. The dispersive effect is shown to be unimportant for the final result. Pis’ma Zh. éksp. Teor. Fiz. 67, No. 6, 420–424 (25 March 1998) Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号