首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, a methodology based on the analysis of single-camera, double-pulse PIV images is described and validated as a tool to characterize fiber-dispersed turbulent flows in large-scale facilities. The methodology consists of image pre-treatment (intensity adjustment, median filtering, threshold binarization and object identification by a recursive connection algorithm) and object-based phase discrimination used to generate two independent snapshots from one single image, one for the dispersed phase and one for the seeding. Snapshots are then processed to calculate the flow field using standard PIV techniques and to calculate fiber concentration and orientation statistics using an object-fitting procedure. The algorithm is tuned and validated by means of artificially generated images and proven to be robust against identified sources of error. The methodology is applied to experimental data collected from a fiber suspension in a turbulent pipe flow. Results show good qualitative agreement with experimental data from the literature and with in-house numerical data.  相似文献   

2.
The present investigation reports on the near field behavior of gas jets in a long confinement and points out the differences between this type of jet flow and those of free jets and jets in a short confinement.The jet, with a diameter of 8.73 mm, is aligned concentrically with a tube of 125 mm diameter; thus giving a confinement area ratio of 205. The arrangement forms part of the test section of an open-jet wind tunnel and this gives a confinement length-to-jet diameter ratio of 1,700. Experiments are carried out with carbon dioxide, air and helium/air jets at different jet velocities. Mean velocity and turbulence measurements are made of the jet near field using a one-color, one-component laser doppler velocimeter operating in the forward scatter mode. In addition, the turbulent shear field of an air jet is examined in more detail using hot-wire anemometers.In view of the long confinement, the presence of the jet is not being felt immediately at the tunnel exit. Consequently, the air column inside the tunnel is first compressed by the jet and then slowly pushed out of the tunnel. This behavior causes the jet to spread rapidly and to decay quickly. As a result, an equilibrium turbulence field is established in the first two diameters of the jet. This equilibrium field bears striking similarity to that found in self-preserving, turbulent free jets and jets in short confinement and is independent of jet fluid densities and velocities. In terms of these characteristics, the near field of jets in a long confinement is very different from that found in free jets and jets in short confinements.  相似文献   

3.
4.
Pulsed laser Mie scattering and laser Doppler velocimetry (LDV), both conditioned on the origin of the seed particles, have been successively performed in turbulent jets with variable density. In the early stages of the jet developments, significant differences are measured between the ensemble average LDV data obtained by jet seeding and those obtained by seeding the ambient air. Careful analysis of the marker statistics shows that this difference is a quantitative measure of the turbulent mixing. The good agreement with gradient–diffusion modelling suggests the validity of a general diffusion equation where the velocities involved are expressed in terms of ensemble conditional Favre averages. This operator accounts for all events (including intermittent ones) and for variations in the density of the marked fluid whose velocity is still specified by the binary origin of the marker.List of symbols DL laminar diffusivity, m2/s - DT turbulent diffusivity, m2/s - d diameter of the jet nozzle, m - Fr Froude number - J diffusion vector, m/s - k global sensitivity of the detection system for one particle (signal level) - NP number of seed particles in the probe volume - NP,i number of seed particles in sample i - NP(i) value of NP in channel i - NB number of Doppler bursts - count rate of bursts, s–1 - Nv number of validated Doppler bursts - count rate of validated bursts, s–1 - Nid number of ideal particles - Nid* number of marked ideal particles - P* probability that an ideal particle be marked by a seed particle - P(z) probability density function for z, m3/kg - probability to have k seed particles in the probe volume - probability of having k seed particle conditioned on a given value of z - r radial coordinate, m - R =(1)/(2), density ratio - S1 local signal level with jet seeding - S1(1) reference signal level in pure stream 1 with jet seeding - s1 = S1/S1(1), normalized signal - vc volumic capacity of the probe volume, m3 - V velocity vector, m/s - Vx axial velocity component, m/s - Vr radial velocity component, m/s - VP particulate velocity vector, m/s - VPj velocity vector of particle j, m/s - VPij velocity vector of the jth particle in sample i, m/s - Vi velocity vector of the marked flow for realization i, m/s - V1,i velocity vector of the flow such it is marked in realization i by particles issuing only from stream 1, m/s - x axial coordinate, m - Yi local mass fraction of species i - Z mixture fraction:local mass fraction of jet fluid - Zi mixture fraction for realization iGreek local density, kg/m3 - i local density for realization i, kg/m3 - (1) density in stream 1 (density of the jet fluid), kg/m3 - 1 time of flight of jet seed particles to reach the probe volume, s - B duration of a Doppler burst, sAverages <A> ensemble average of A - Ā time average of A - Favre average, , ( ) the present notation is only due to printing problems - A Favre fluctuation,   相似文献   

5.
Local transport of the flow momentum and scalar admixture in the near-field of turbulent swirling jets (Re = 5,000) has been investigated by using a combination of the particle image velocimetry and planar laser-induced fluorescence methods. Advection and turbulent and molecular diffusions are evaluated based on the measured distributions of the mean velocity and concentration and the Reynolds stresses and fluxes. As has been quantified from the data, the flow swirl intensifies the entrainment of the surrounding fluid and promotes mass and momentum exchange in the outer mixing layer. A superimposed swirl results in the appearance of a wake/recirculation region at the jet axis and, consequently, the formation of an inner shear layer. In contrast to the scalar admixture, the momentum exchange in the inner shear layer is found to be strongly intensified by the swirl. For the jet with the highest considered swirl rate, a substantial portion of the surrounding fluid is found to enter the unsteady central recirculation zone, where it mixes with the jet that is issued from the nozzle. The contribution of the coherent velocity fluctuations, which are induced by large-scale vortex structures, to the turbulent transport has been evaluated based on triple decomposition, which was based on proper orthogonal decomposition analysis of the velocity data sets. For the considered domain of the jet with the highest swirl rate and vortex breakdown, the contributions of detected helical vortex structures, inducing pressing vortex core, to the radial fluxes of the flow momentum and the scalar admixture are found to locally exceed 65% and 80%, respectively.  相似文献   

6.
In this work, we propose to study non isothermal air–air coaxial jets with two different approaches: parabolic and elliptic approaches. The standard kε model and the RSM model were applied in this study. The numerical resolution of the equations governing this flow type was carried out for: the parabolic approach, by a “home-made” CFD code based on a finite difference method, and the elliptic approach by an industrial code (FLUENT) based on a finite volume method. In forced convection mode (Fr = ∞), the two turbulence models are valid for the prediction of the mean flow. But for turbulent sizes, kε model gives results closer to those achieved in experiments compared to RSM Model. Concerning the limit of validity of the parabolic and elliptic approaches, we showed that for velocities ratio r lower than 1, the results of the two approaches were satisfactory. On the other hand, for r > 1, the difference between the results became increasingly significant. In mixed convection mode (Fr ≅ 20), the results obtained by the two turbulence models for the mean axial velocity were very different even in the plume region. For the temperature and the turbulent sizes the two models give satisfactory results which agree well with the correlations suggested by the experimenters for X ≥ 20. Thus, the second order model with σ t = 0.85 is more effective for a coaxial jet study in a mixed convection mode.  相似文献   

7.
The present paper reports measurements of axial and radial velocities obtained with laser-Doppler anemometry in the transitional region of a round jet. The predominant frequencies of the coherent structures detected in the non-artificially excited jet, correspond to Strouhal numbers, around 0.33 and 0.55 and an interpretation of these observations is made. The use of external excitation can modify some characteristics of the jets disturbing the balance between the different flow structures, namely those corresponding to the two values of St. The jet diameter was 30.0 mm and the velocities ranged from near zero up to 15 m/s, corresponding to Reynolds number of 2.87 × 104.To obtain the velocity probability distributions, power spectral distributions and auto-correlations, together with mean and rms velocities a LDA with double Bragg cell system was used. The Doppler signal was analysed with a counter interfaced to an Apple II microcomputer and a Racal magnetic tape.  相似文献   

8.
Self-Similarity in turbulent round jets has been the object of investigation from several decades. The evolution of turbulent submerged jets is characterized by the presence of two regions: the region of flow establishment, or near field region (NFR) and the fully developed region (FDR), or far-field region (FFR). The momentum spreading in the FDR is known to be self-similar and few mathematical models have been presented in the past to describe it. The flow evolution in the NFR has been rarely studied since there is a certain consensus on the idea that the flow in the NFR is not self-similar. In this work, we study the flow evolution of a turbulent submerged round jet by means of large eddy simulation (LES) at several Reynolds numbers ranging from 2492 to 19,988. Three new self-similar laws are proposed to describe the flow evolution in the NFR, one for the initial region, called Undisturbed Region of Flow, (URF), and two for the final region, the potential core region (PCR). The numerical results presented in this work are also validated with the self-similar laws for the FDR proposed by Tollmien (1926) and Görtler (1942), and the experimental data of Hussein et al. (1994), and Panchapakesan and Lumley (1993), in the FDR; those of Davies et al. (1963), in the PCR; and van Hout et al. (2018), in the URF. The conclusion is that previous inability to find the self-similarity law in the NFR is due to the attempt to find a unique self-similar variable to describe the momentum spreading in both the URF and the PCR.  相似文献   

9.
A single-shot laser Mie scattering technique is used to measure the instantaneous radial distributions of seed particles in the early development zone of turbulent jets with various bulk densities issuing into a slow coflowing air stream. Instantaneous radial profiles of mixture fraction are derived from the measured distributions with either the jet fluid or only the coflow air seeded, depending on the investigated zone. Radial gradients and autocorrelation profiles are analyzed to study the scalar dissipation and the mixing length scale respectively. Self-similar behaviour is investigated by plotting the centreline scalar decay as a function of a reduced abscissa, which accounts for the axial variation of the jet density in its early development. As the density is simultaneously derivable from the mixture fraction data, direct comparisons between Favre and Reynolds averaged values are obtained which show very significant differences in the near field.  相似文献   

10.
The effects of solid particles on the flow structure in the near field region of a coaxial water jet are investigated non-intrusively using molecular tagging velocimetry. Glass beads of 240 μm and specific gravity SG of 2.46 are used at three volume loadings of γv=0.03, 0.06, and 0.09% in the central water jet with a Reynolds number of 4.1×104. Measurements are acquired for four annular to central jet velocity ratios in the range 0.11≤ U o/U i≤1.15 at downstream distances up to six inner jet diameters and the results are analyzed for the effects of solid particles on the characteristics of flow. It is found that the addition of particles does not affect the mean fluid velocity profile in this region. The results also indicate a small and moderate enhancement of axial turbulent velocity and radial gradients of velocity fluctuations, respectively, due to the presence of particles.  相似文献   

11.
An experimental study of the flow field in a two-dimensional wall jet has been conducted. All measurements were carried out using hot-wire anemometry. The experimental facility has a rectangular slot nozzle of high aspect ratio l/b = 100 (where l and b are the length and height slot, respectively). Mean velocities and Reynolds stresses were determined with three nozzle Reynolds numbers (Re = 1 × 104, 2 × 104 and 3 × 104) and four different inclination angles between the wall and the flow velocity at the nozzle (β = 0°, 10°, 20° and 30°). Results indicate that all wall jets are self-preserving in the developed region. Normal to the wall two regions can be identified: one similar to a plane free jet and the other similar to a boundary layer. Downstream the interaction between these two regions creates a mixed or third region. The logarithmic region increases with the distance from the nozzle and with the Reynolds number. For the inclined wall jet, the spreading rate expressed in terms of jet half-width or maximum velocity decay with respect to the streamwise distance, asymptotes to a linear law. The streamwise locations where the jet becomes self-similar are farther from the exit than in parallel wall jet. The slope of both half-width and maximum velocity decay in the developed region are affected by both wall jet inclination angle and nozzle exit Reynolds number.  相似文献   

12.
An experimental study of two-phase turbulent coaxial jets   总被引:1,自引:0,他引:1  
The effect of solid particles on the flow structure of axisymmetric turbulent coaxial jets has been studied. A laser-Doppler anemometer was used to measure the mean and fluctuation velocities of both phases, and a Malvern laser diffraction instrument was applied to measure particle size and concentration. A series of velocity ratios and particle loading ratios were investigated, and the results were analysed for the effects of these ratios on the mixing characteristic and the similarity behavior of the jet. The effects of particle diameter and its distribution were also studied as well as their influence on the coaxial jet behavior.  相似文献   

13.
This paper is devoted to the statistical characterization of the pressure fluctuations measured in the near field of a compressible jet at two subsonic Mach numbers, 0.6 and 0.9. The analysis is focused on the hydrodynamic pressure measured at different distances from the jet exit and analyzed at the typical frequency associated to the Kelvin–Helmholtz instability. Statistical properties are retrieved by the application of the wavelet transform to the experimental data and the computation of the wavelet scalogram around that frequency. This procedure highlights traces of events that appear intermittently in time and have variable strength. A wavelet-based event tracking procedure has been applied providing a statistical characterization of the time delay between successive events and of their energy level. On this basis, two stochastic models are proposed and validated against the experimental data in the different flow conditions  相似文献   

14.
Direct and large-eddy simulations (DNS/LES) of accelerating round jets are used to analyze the effects of acceleration on the kinematics of vortex rings in the near field of the jet (x/D < 12). The acceleration is obtained by increasing the nozzle jet velocity with time, in a previously established (steady) jet, and ends once the inlet jet velocity is equal to twice its initial value. Several acceleration rates (α = 0.02–0.6) and Reynolds numbers (Re D = 500–20000) were simulated. Acceleration maps were used to make a detailed study of the kinematics of vortex rings in accelerating jets. One of the effects of the acceleration is to cause a number of new primary and secondary vortex merging events that are absent from steady jets. As the acceleration rate α increases, both the number of primary merging events between rings and the axial position where these take place decreases. The statistics for the speed of the starting ring that forms at the start of the acceleration phase for each simulation, agree well with the statistics for the “front” speed observed by Zhang and Johari (Phys Fluids 8:2185–2195, 1996). Acceleration maps and flow visualizations show that during the acceleration phase the near field coherent vortices become smaller and are formed at an higher frequency than in the steady jet, and their (mean) shedding frequency increases linearly with the acceleration rate. Finally, it was observed that the acceleration decreases the spreading rate of the jet, in agreement with previous experimental works.   相似文献   

15.
Numerical and experimental study of two turbulent opposed plane jets   总被引:2,自引:0,他引:2  
The turbulent interaction between two opposed plane jets separated by a distance H is experimentally studied by using a PIV (Particle Image Velocimetry) method and numerically investigated by means of a finite volume code. Two turbulence models have been tested: the standard k-ɛ model and a second-order model. The validation of the numerical study was performed by comparing the results with experimental data obtained for the case of two interacting opposed jets at ambient temperature (isothermal case). The effect of the angle of inclination of the jets is studied. Conclusions of the validation are then used to study the interaction between two jets, one being maintained at ambient temperature whereas the other is heated. Results show that the stagnation point moves towards the heated jet. It is shown that the heating induces a stabilizing effect on the flow.  相似文献   

16.
A hybrid computational fluid dynamics (CFD) and computational aeroacoustics (CAA) method is used to compute the acoustic field of turbulent hot jets at a Reynolds number Re=316,000 and a Mach number M=0.12. The flow field computations are performed by highly resolved large-eddy simulations (LES), from which sound source terms are extracted to compute the acoustic field by solving the acoustic perturbation equations (APE). Two jets are considered to analyze the impact of exit conditions on the resulting jet sound field. First, a jet emanating from a fully resolved non-generic nozzle is simulated by solving the discrete conservation equations. This computation of the jet flow is denoted free-exit-flow (FEF) formulation. For the second computation, the nozzle geometry is not included in the computational domain. Time averaged exit conditions, i.e. velocity and density profiles of the first formulation, plus a jet forcing in form of vortex rings are imposed at the inlet of the second jet configuration. This formulation is denoted imposed-exit-flow (IEF) formulation. The free-exit-flow case shows up to 50% higher turbulent kinetic energy than the imposed-exit-flow case in the jet near field, which drastically impacts noise generation. The FEF and IEF configurations reveal quite a different qualitative behavior of the sound spectra, especially in the sideline direction where the entropy source term dominates sound generation. This difference occurs since the noise sources generated by density and pressure fluctuations are not perfectly modeled by the vortex ring forcing method in the IEF solution. However, the total overall sound pressure level shows the same qualitative behavior for the FEF and IEF formulations. Towards the downstream direction, the sound spectra of the FEF and IEF solutions converge.  相似文献   

17.
The intermittent statistics of the pressure fluctuations measured in the near field of a compressible jet are investigated under several flow conditions. An experiment is carried out in a semi-anechoic chamber on a single stream compressible jet at Mach numbers varying from 0.5 to 0.9 and measuring the fluctuating pressure in several positions in the near field. The main quantities analyzed are the intermittent time and the energy amplitude of events that are extracted from the experimental data through a wavelet-based tracking algorithm. As an extension of a previous paper (Camussi et al., 2017), low order statistical moments (mean and variance) and Probability Distribution Functions are parametrized in terms of three relevant quantities characterizing the jet flow physics: the Mach number, the radial distance from the jet axis and the axial position. It is observed that the non-dimensional statistical quantities are weakly dependent upon the flow conditions allowing for simple stochastic models to be introduced on the basis of suitable fittings of averaged statistical properties and of the Probability Distribution Functions.  相似文献   

18.
The behavior of compressible jets originated from initially turbulent pipe flows issuing in still air has been investigated at three different subsonic Mach numbers, 0.3, 0.6 and 0.9. Helium, nitrogen and krypton gases were used to generate the jet flows and investigate the additional effects of density on the flow structure. Particle image velocimetry, high-frequency response pressure transducers and thermocouples were used to obtain velocity, Mach number and total temperature measurements inside the flow field. The jets were formed at the exit of an adiabatic compressible frictional turbulent pipe flow, which was developing toward its corresponding sonic conditions inside the pipe, and continued to expand within the first four diameters distance after it exited the pipe. Theoretical considerations based on flow self-similarity were used to obtain the decay of Mach number along the centerline of the jets for the first time. It was found that this decay depends on two contributions, one from the velocity field which is inversely proportional to the distance from the exit and one from the thermal field which is proportional to this distance. As a result, a small non-linearity in the variation of the inverse Mach number with downstream distance was found. The decay of the Mach number at the centerline of the axisymmetric jets increases by increasing the initial Mach number at the exit of the flow for all jets. The decay of mean velocity at the centerline of the jets is also higher at higher exit Mach numbers. However, the velocity non-dimensionalized by the exit velocity seems to decrease faster at low exit Mach numbers, suggesting a reduced mixing with increasing exit flow Mach numbers. Helium jets were found to have the largest spreading rate among the three different gas jets used in the present investigation, while krypton jets had the lowest spreading rate. The spreading rate of each gas decreases with increasing its kinetic energy relatively to its internal energy.  相似文献   

19.
We describe a simple method for estimating turbulent boundary layer wall friction using the fit of measured velocity data to a boundary layer model profile that extends the logarithmic profile all the way to the wall. Two models for the boundary layer profile are examined, the power-series interpolation scheme of Spalding and the Musker profile which is based on the eddy viscosity concept. The performance of the method is quantified using recent experimental data in zero pressure gradient flat-plate turbulent boundary layers, and favorable pressure gradient turbulent boundary layers in a pipe, for which independent measurements of wall shear are also available. Between the two model profiles tested, the Musker profile performs much better than the Spalding profile. Results show that the new procedure can provide highly accurate estimates of wall shear with a mean error of about 0.5% in friction velocity, or 1% in shear stress, an accuracy that is comparable to that from independent direct measurements of wall shear stress. An important advantage of the method is its ability to provide accurate estimates of wall shear not only based on many data points in a velocity profile but also very sparse data points in the velocity profile, including only a single data point such as that originating from a near-wall probe.  相似文献   

20.
 Temperatures, velocities, and droplet sizes are measured in turbulent condensing steam jets produced by a facial sauna, for varying nozzle diameters and varying initial velocities (Re=3,600–9,200). The release of latent heat due to droplet condensation causes the temperature in the two-phase jet to be significantly higher than in a single-phase jet. At some distance from the nozzle, droplets reach a maximum size and start to evaporate again, which results in a change in sign of latent heat release. The distance of maximum size is determined from droplet size measurements. The experimental results are compared with semi-analytical expressions and with a fully coupled numerical model of the turbulent condensing steam jet. The increase in centreline temperature due to droplet condensation is successfully predicted. Received: 5 April 2000 / Accepted: 15 November 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号