首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Stimulated by recent experiments, which verified the preservation of the analyte solution charge state upon incorporation in the host matrix crystals, investigations are reported focusing on the role of analyte and counter ions in the matrix-assisted laser desorption/ionization (MALDI) process. These counter ions are only visible in the MALDI mass spectra under certain conditions, i.e., if inter-ionic proton transfer followed by evaporation of the neutrals is prevented, as in the case of metal cations. However, ion pairs can also survive the MALDI process if anions of very low gas phase basicities are used. By this means the intermediates of ion production in MALDI can be visualized. Depending on the amount of energy transfer to the analyte, which is mainly controlled by the matrix, different grades of adduct generation are observed. The analyte-, matrix- and polarity-dependant adduct distribution substantiates the hypothesis that multi-ion pairs are incorporated in the MALDI crystals and that ionization is essentially accomplished by charge separation processes. Moreover, the adduct distribution--and most probably also the charge separation efficiency--was found to be caused mainly by competition of different anionic species for coordination at the positively charged analyte sites. Furthermore, the results point to a less efficient charge separation with increasing number of ion pairs, which might be one major reason that mainly singly charged ions are obtained with MALDI.  相似文献   

2.
It has been described that ion yield in both positive- and negative-ion matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) of peptides is often inhibited by trace amounts of alkali metals and that the MALDI mass spectra are contaminated by the interfering peaks originating from traces of alkali metals, even when sample preparation is carefully performed. Addition of serine to the commonly used MALDI matrix alpha-cyano-4-hydroxycinnamic acid (CHCA) significantly improved and enhanced the signals of both protonated and deprotonated peptides, [M+H](+) and [M-H](-). The addition of serine to CHCA matrix eliminated the alkali-metal ion adducts, [M+Na](+) and [M+K](+), and the CHCA cluster ions from the mass spectra. Serine and serinephosphate as additives to CHCA enhanced and improved the formation of molecular-related ions of phosphopeptides in negative-ion MALDI mass spectra.  相似文献   

3.
Matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) mass spectra of small kappa-carrageenans are reported and discussed. MALDI spectra can be obtained in both positive and negative ion mode. In the absence of extraneous metal ions, positive ions are formed by the attachment of one Na(+) ion to the carrageenan, whereas for negative ions one Na(+) ion is detached from the sulfate group. Multiply charged species are not observed in MALDI. Intense ESI spectra can be obtained in negative ion mode and now multiply charged species are seen. Alkali exchange experiments show that in these small carrageenan anions one, but only one, alkali metal ion is bound in a bidentate coordination with two ionic sulfate groups. G2-type ab initio calculations on model ions HO(-) [M(+)] (-)OH (M = Li, Na, K, Cs), as well as arguments based on a simple Coulombic interaction model, show that the bidentate stabilization energy drops rapidly as the size of the alkali cation increases. Exchange of Na(+) with Li(+) leads to expulsion of the Na(+) ion generating, in ESI, intense multiply charged anions. An attempt is made to rationalize this behavior in terms of hydration effects.  相似文献   

4.
A method for enhancing positive analyte ion signal in MALDI is described. The idea is based on influencing the kinetic energy of free electrons emitted from the organic/metal interface. It has been recently shown that free electrons in MALDI have energies around 1 eV. This energy is close to the maximum capture cross-section of most common MALDI matrices, leading to the efficient formation of negative matrix ions. This results in the reduction of the positive analyte ion yield. The effect can be minimized by shifting the kinetic energy of the electrons away from the maximum of the matrix capture cross-section by choosing a different substrate material.  相似文献   

5.
Matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) and electrospray ionization mass spectrometry (ESI-MS) are used to evaluate the alkali metal ion binding selectivities of a series of calixarenes. Each calixarene of interest is mixed with one or more alkali metal salts (1:100 ratio of calixarene to metal), either in the ESI solution or on the MALDI probe surface, and the relative binding selectivities are directly determined from the intensities of the calixarene/metal complexes in the mass spectra. For t-butylcalix[4]arene-tetraacetic acid tetraethyl ester (calixarene 1), complexation of Na+ is favored over complexation of K+, in agreement with prior solution results obtained by conventional methods. For the three calixarenes that do not have t-butyl groups on the upper rims, the calixarenes preferentially bind K+ over Na+, thus demonstrating that size selective complexation can be probed with both the ESI and MALDI methods. Collision-activated dissociation results indicate that the phenyl oxygens, but not necessarily the ethoxy ethyl oxygens of the lower rims, are the primary binding sites for the alkali metal ions.  相似文献   

6.
Controlled in-source ion-molecule reactions are performed for the first time in an external matrix assisted laser desorption ionization (MALDI) source of a Fourier transform ion cyclotron resonance mass spectrometer. The MALDI source with a hexapole ion guide that was originally designed to incorporate pulsed gas to collisionally cool ions (Baykut, G.; Jertz, R.; Witt, M. Rapid Commun. Mass Spectrom. 2000, 14, 1238-1247) has been modified to allow the study of in-source ion-molecule reactions. Upon laser desorption, a reaction gas was introduced through a second inlet and allowed to interact with the MALDI-generated ions trapped in the hexapole ion guide. Performing ion-molecule reactions in the high pressure range of the ion source prior to analysis in the ion cyclotron resonance (ICR) cell allows to maintain the ultra high vacuum in the cell which is crucial for high mass resolution measurements. In addition, due to the reaction gas pressure in the hexapole product ion formation is much faster than would be otherwise possible in the ICR cell. H/D exchange reactions with different peptides are investigated, as are proton-bound complex formations. A typical experimental sequence would be ion accumulation in the hexapole ion guide from multiple laser shots, addition of cooling gas during ion formation, addition of reaction gas, varied time delays for the ion-molecule reactions, and transmission of the product ions into the ICR cell for mass analysis. In this MALDI source H/D exchange reactions for different protonated peptides are investigated, as well as proton-bound complex formations with the reaction gas triethylamine. Amino acid sequence, structural flexibility and folding state of the peptides can be seen to play a part in the reactivity of such ions.  相似文献   

7.
Electrospray mass spectrometry (ES-MS) was successfully employed for the structural differentiation of six isomeric trimethylfurocoumarins of possible pharmaceutical interest. Two different approaches were employed. The first was based on MS(n) experiments of MH(+) ions. Although the product ion spectra of MH(+) of the isomers are very similar, the MS(3) spectra of the collisionally generated [MH[bond]CO](+) ions show some characteristic differences. The second approach was based on complexation of the molecules with Li(+), Na(+) and K(+) using ESI-MS of sample solutions containing alkali ions in a 100:1 molar ratio with respect to the analyte. Significant differences were observed in complex production yields, and these were related to the dimension of the alkali ion and to the steric availability of chelating groups in the different isomers.  相似文献   

8.
The utility of electrospray ionization mass spectrometry (ESI-MS) for characterizing dissolved metal species has generated considerable interest in the use of this technique for metal speciation. However, the development of accurate speciation methods based on ESI-MS requires a detailed understanding of the mechanisms by which dissolved metal species are ionized during electrospray. We report how the analysis of alkali and alkaline earth metal species provides new information about some of the processes that affect electrospray ion yield. Selected metal ions and organic ligands were combined in 50 : 50 water-acetonitrile buffered with acetic acid or ammonium acetate and analyzed by flow injection ESI-MS using mild electrospray conditions. Species formed by alkali metal ions with thiol and oxygen-donating ligands were detected in acidic and neutral pH solutions. Electrochemical oxidation of N, N-diethyldithiocarbamate and glutathione during electrospray was indicated by detection of the corresponding disulfides as protonated or alkali metal species. The extent of ligand oxidation depended on solution pH and the dissociation constant of the thiol group. Tandem mass spectrometric experiments suggested that radical cations such as [NaL](+.) (where L=N,N-diethyldithiocarbamate) can be generated by in-source fragmentation of disulfide species. Greater complexation of alkali metals at neutral pH was indicated by a corresponding decrease in the relative abundance of the free metal ion. The number of alkali metal ions bound by glutathione and phthalic acid also increased with increasing pH, in accordance with thermodynamic equilibrium theory. Alkaline earth metal species were detected only in acidic solutions, the absence of 8-hydroxyquinoline complexes being attributed to their relative instability and subsequent dissociation during electrospray. Hence, accurate speciation by ESI-MS depends on experimental conditions and the intrinsic properties of each analyte. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

9.
Ferrichrome, a fungal siderophore that is also utilized by some bacterial species, was studied with liquid secondary ion mass spectrometry (LSIMS) and matrix-assisted laser desorption ionixation (MALDI) mass spectrometry. A strong ionic signal corresponding to a FeIII complex was observed with LSIMS in the positive ion mode. Switching the polarity of the mass spectrometer did not necessarily result in reduction of ferric ion, although certain conditions led to appearance of a FeII complex signal as well. The results of the structural studies of the metal ion-cyclic peptide complex with collisionally induced dissociation allowed unambiguous identification of the chelation sites. The action of the siderophore on FeIII was studied by in vitro chelation of ferric ion (from ferric citrate) by the iron-free ferrichrome. Effective chelation of ferric ion was compared to actions of the iron-free ferrichrome on other metal ions. Unlike LSIMS, desorption with MALDI did not form selectively molecular ions of intact ferrichrome: the spectra contained abundant peaks corresponding to the cyclic peptide itself and its nonspecific association with alkali metal ions.  相似文献   

10.
1,5‐Diaminonaphthalene (DAN) has been described as an interesting and effective matrix for matrix‐assisted laser desorption/ionization (MALDI) experiments in positive ion mode, being able to activate in‐source decomposition phenomena and, when employed for the analysis of proteins containing disulphide bridge(s), being able to activate reduction processes, resulting in disulphide bridge cleavage. The mechanisms of the DAN reactivity have been studied in detail, and the results indicate that the reduction properties of the matrix are of a radical nature. In the present study the structure of the reactive species produced by DAN, responsible for its reductive properties, has been investigated by accurate mass measurements and tandem mass spectrometry (MS/MS) experiments. Contrary to what is usually observed by laser irradiation of other MALDI matrices (with the sole formation of the MH+ ion of the matrix), DAN leads to the formation of odd‐electron molecular ions M+?. This can be rationalized by the occurrence of two photon pooling processes, due to the low ionization energy of DAN. Thus the M+? ion of DAN can be considered responsible for both analyte protonation and disulphide bond reduction and some mechanisms are proposed for this behaviour. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
The complex formation between different crown ethers and the cryptand [222] with alkali metal and ammonium ions in chloroform has been investigated by means of calorimetric titrations. The stability constants, reaction enthalpies and entropies for complex formation in chloroform have been determined. The complexation of alkali metal ions is favored by enthalpic contributions and influenced by both the ligand and the nature of the cation. The reaction enthalpies for complex formation of different ammonium salts with cryptand [222] are higher compared to the corresponding values for the reaction with different 18-crown-6 derivatives in chloroform due to the complete encapsulation of ammonium ion by the cryptand [222]. The benzo group attached to the crown ethers and the nature of the anion borne by the ammonium ion influence complex formation of ammonium with crown ethers. In the case of ammonium salts, competitive measurements have been carried out to underline the influence of the anion upon the complex formation. From the reaction enthalpies for complexation of ammonium ions, the contributions for the formation of hydrogen bonds are calculated using experimental data. Taken in part from the Ph.D. thesis of R.-C. Mutihac, University Duisburg-Essen, 2007.  相似文献   

12.
Eleven differently substituted 3,4-dihydro-2H-1,3-benzoxazine resorcarenes were studied by electrospray ionisation (ESI) and matrix-assisted laser desorption/ionisation (MALDI) mass spectrometry, using Fourier transform ion cyclotron resonance (FT-ICR) and time-of-flight (TOF) mass spectrometers, respectively. Under ESI conditions it was possible to transfer the intact resorcarenes from solution to the gas phase, yielding [M + H](+) and [M + 2H](+) ions as the main ions observed. Energy increase of the ions induced ready decomposition through successive eliminations of four CH(2)NR groups. Ion-molecule reactions showed that the ionising proton was situated somewhere inside the molecule and could not be reached with neutral reagent gases. In the host-guest complexation experiments, the benzoxazine resorcarenes studied turned out to be poor hosts for alkali metal and ammonium ions. In MALDI experiments, 2,5-dihydroxybenzoic acid proved to be the best matrix for these compounds. However, the intensity of the [M + H](+) ions was low for all compounds, and extensive fragmentation with consecutive elimination of CH(2)NR groups was observed.  相似文献   

13.
The macrocycle-mediated fluxes of several alkali metal cations have been determined in a H2O-CH2Cl2-H2O liquid membrane system. Water-insoluble proton-ionizable macrocycles of the pyridono type were used. The proton-ionizable feature allows the coupling of cation transport to reverse H+ transport. This feature offers promise for the effective separation and/or concentration of alkali metal ions with the metal transport being driven by a pH gradient. A counter anion in the source phase is not co-transported. The desired separation of a particular metal ion involves its selective complexation with the macrocycle, subsequent extraction from the aqueous phase to the organic phase, and exchange for H+ at the organic phase-receiving phase interface. Factors affecting transport which were studied include ring size, source phase pH, and receiving phase pH. Lithium was transported at a rate higher than that of the other alkali metals in both single and competitive systems using a 15-crown-5 pyridono carrier.  相似文献   

14.
Although matrix-assisted laser desorption/ionization (MALDI) was developed more than a decade ago and broad applications have been successfully demonstrated, detailed mechanism of MALDI is still not well understood. Two major models; namely photochemical ionization (PI) and cluster ionization (CI) mechanisms have been proposed to explain many of experimental results. With the photochemical ionization model, analyte ions are considered to be produced from a protonation or deprotonation process involving an analyte molecule colliding with a matrix ion in the gas phase. With the cluster ionization model, charged particles are desorbed with a strong photoabsorption by matrix molecules. Analyte ions are subsequently produced by desolvation of matrix from cluster ions. Nevertheless, many observations still cannot be explained by these two models. In this work, we consider a pseudo proton transfer process during crystallization as a primary mechanism for producing analyte ions in MALDI. We propose an energy transfer induced disproportionation (ETID) model to explain the observation of an equal amount of positive and negative ions produced in MALDI for large biomolecules. Some experimental results are used for comparisons of various models.  相似文献   

15.
This work experimentally verifies and proves the two long since postulated matrix-assisted laser desorption/ionization (MALDI) analyte protonation pathways known as the Lucky Survivor and the gas phase protonation model. Experimental differentiation between the predicted mechanisms becomes possible by the use of deuterated matrix esters as MALDI matrices, which are stable under typical sample preparation conditions and generate deuteronated reagent ions, including the deuterated and deuteronated free matrix acid, only upon laser irradiation in the MALDI process. While the generation of deuteronated analyte ions proves the gas phase protonation model, the detection of protonated analytes by application of deuterated matrix compounds without acidic hydrogens proves the survival of analytes precharged from solution in accordance with the predictions from the Lucky Survivor model. The observed ratio of the two analyte ionization processes depends on the applied experimental parameters as well as the nature of analyte and matrix. Increasing laser fluences and lower matrix proton affinities favor gas phase protonation, whereas more quantitative analyte protonation in solution and intramolecular ion stabilization leads to more Lucky Survivors. The presented results allow for a deeper understanding of the fundamental processes causing analyte ionization in MALDI and may alleviate future efforts for increasing the analyte ion yield.  相似文献   

16.
Collision-activated dissociation (CAD) has been employed to assess the gas-phase fragmentation behavior of a series of 1:1 oligodeoxynucleotide (ODN):metal complexes over a range of charge states, using several ten-residue ODNs and a wide array of alkali, alkaline earth, and transition metals. For parent species in low to intermediate charge states, complexation with Ca(+2), Sr(+2), or Ba(+2) altered the relative intensity of M-B species, promoting loss of cytosine over loss of guanine. The relative intensities of sequence ions were largely unaffected. This behavior was most prevalent for isomeric sequences with complementary residues at the 5'- and 3'-termini, suggesting that metal complexation may change the gas-phase conformation and/or conformational dynamics for some sequences. In higher charge states, some ODN/Ba(+2) complexes produced abundant fragment ions corresponding to metallated a(n)(-m) species, which are not commonly observed in CAD mass spectra for deprotonated ODNs. The formation of these ions was most favored for complexes between Ba(+2) and ODN sequences with a thymine residue at Position 6. Literature precedent exists for the formation of a(n)(-m) ions from sequences in which covalent modification generates one or more neutral sites along the phosphate backbone. ODN/metal adducts in high charge states possess only a few acidic protons, and the juxtaposition of these neutral phosphate groups near thymine residues and the bound Ba(+2) ion may direct formation of the metallated a(n)(-m) species.  相似文献   

17.
Structural effects on polyether cationization in matrix-assisted laser desorption/ionization (MALDI) are investigated using three different polyethers: PEG (polyethylene glycol), PPG (polypropylene glycol), and PTHF (polytetrahydrofuran). This study was performed using equimolar cesium and lithium chlorides as the cationizing agent. It was observed that the polyether structure variation led to a substantial change in polyether selectivity for alkali metal ion complexation. Moreover, it was found that like PEG, PPG displays a different selectivity for Cs+ and Li+ with different matrices. Discussion of these results and their implication in MALDI are given.  相似文献   

18.
A new matrix-assisted laser desorption/ionization (MALDI) source for Fourier transform ion cyclotron resonance mass spectrometry (FTMS) has been developed. The new source is equipped with a hexapole ion guide. The sample on the laser target is one millimeter from the hexapole ion guide, so that ions are desorbed directly into the guide. A device for pulsing collision gas in direct proximity to the laser target makes it possible to cool the ions, which have a kinetic energy spread of several electron volts when produced by the MALDI process. These ions are trapped in the hexapole where positive potentials at the laser target and at an extraction plate help trap ions along the longitudinal axis. After a pre-defined trapping time the voltage of the extraction plate is reversed and the trapped ions are extracted for transmission to the ion cyclotron resonance cell. Accumulation of ions from multiple laser shots in the hexapole before mass spectrometric analysis increases sensitivity. Preliminary sensitivity studies with substance P show that 10 attomoles of analyte applied on the target can be detected with a signal-to-noise (S/N) ratio >15.  相似文献   

19.
A high-performance orthogonal time-of flight (TOF) mass spectrometer, in combination with the matrix assisted laser desorption/ionization (MALDI) source operating at elevated pressure (∼1 torr in N2), was used to perform MALDI-TOF analyses of pentacene and some of its derivatives with and without an added matrix. These molecules are among the most interesting semiconductor materials for organic thin film transistor applications (OTFT). The observation of ion-molecule reactions between “cold” analyte ions and neutral analyte molecules in the gas phase has provided some insight into the mechanism of pentacene cluster formation and its functionalized derivatives. Furthermore, some of the matrices employed to assist the desorption/ionization process of these compounds were observed to influence the outcome via ion-molecule reactions of analyte ions and matrix molecules in the gas phase. The stability and reactivity of the compounds and their clusters in the MALDI plume during gas-phase expansion were evaluated; possible structures of the resulting clusters are discussed. The MALDI-TOF technique was also helpful in distinguishing between two isomeric forms of bis-[(triisopropylsilyl)-ethynyl]-pentacene.  相似文献   

20.
We utilized gas phase hydrogen/deuterium (H/D) exchange reactions and ab initio calculations to investigate the complexation between a model peptide (Arg-Gly-AspRGD) with various alkali metal ions. The peptide conformation is drastically altered upon alkali metal ion complexation. The associated conformational changes depend on both the number and type of complexing alkali metal ions. Sodium has a smaller ionic diameter and prefers a multidentate interaction that involves all three amino acids of the peptide. Conversely, potassium and cesium form different types of complexes with the RGD. The [RGD + 2Cs − H]+ species exhibit the slowest H/D exchange reactivity (reaction rate constant of 6 × 10−13 cm3molecule−1s−1 for the fastest exchanging labile hydrogen with ND3). The reaction rate constant of the protonated RGD is two orders of magnitude faster than that of the [RGD + 2Cs − H]+. Addition of the first cesium to the RGD reduces the H/D exchange reaction rate constant (i.e., D0) by a factor of seven whereas sodium reduces this value by a factor of thirty. Conversely, addition of the second alkali metal ions has the opposite effect; the rate of D0 disappearance for all [RGD + 2Met − H]+ species (MetNa, K, and Cs) decreases with the alkali metal ion size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号