首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main purpose of this work is to develop a phenomenological model, which accounts for the evolution of the elastic and plastic properties of fcc polycrystals due to a crystallographic texture development and predicts the axial effects in torsion experiments. The anisotropic portion of the effective elasticity tensor is modeled by a growth law. The flow rule depends on the anisotropic part of the elasticity tensor. The normalized anisotropic part of the effective elasticity tensor is equal to the 4th-order coefficient of a tensorial Fourier expansion of the crystal orientation distribution function. Hence, the evolution of elastic and viscoplastic properties is modeled by an evolution equation for the 4th-order moment tensor of the orientation distribution function of an aggregate of cubic crystals. It is shown that the model is able to predict the plastic anisotropy that leads to the monotonic and cyclic Swift effect. The predictions are compared to those of the Taylor–Lin polycrystal model and to experimental data. In contrast to other phenomenological models proposed in the literature, the present model predicts the axial effects even if the initial state of the material is isotropic.  相似文献   

2.
This paper presents a nonlinear mathematical model for evolution of wrinkle patterns of an anisotropic crystal film on a viscoelastic substrate layer. The underlying mechanism of wrinkling has been generally understood as a stress-driven instability. Previously, theoretical studies on wrinkling have assumed isotropic elastic properties for the film. Motivated by recent experimental observations of ordered wrinkle patterns in single-crystal thin films, this paper develops a theoretical model coupling anisotropic elastic deformation of a crystal film with viscoelastic deformation of a thin substrate layer. A linear perturbation analysis is performed to predict the onset of wrinkling instability and the initial evolution kinetics. An energy minimization method is adopted to analyze wrinkle patterns in the equilibrium states. For a cubic crystal film under an equi-biaxial compression, orthogonally ordered wrinkle patterns are predicted in both the initial stage and the equilibrium state. This is confirmed by numerical simulations of evolving wrinkle patterns. By varying the residual stresses in the film, numerical simulations show that a variety of wrinkle patterns (e.g., orthogonal, parallel, zigzag, and checkerboard patterns) emerge as a result of the competition between material anisotropy and stress anisotropy.  相似文献   

3.
A uniaxial viscoplastic deformation is motivated as a discrete sequence of stable and unstable equilibrium states and approximated by a smooth family of stable states of equilibrium depending on the history of the mechanical process. Three-dimensional crystal viscoplasticity starts from the assumption that inelastic shearings take place on slip systems, which are known from the particular geometric structure of the crystal. A constitutive model for the behaviour of a single crystal is developed, based on a free energy, which decomposes into an elastic and an inelastic part. The elastic part, the isothermal strain energy, depends on the elastic Green strain and allows for the initial anisotropy, known from the special type of the crystal lattice. Additionally, the strain energy function contains an orthogonal tensor-valued internal variable representing the orientation of the anisotropy axes. This orientation develops according to an evolution equation, which satisfies the postulate of full invariance in the sense that it is an observer-invariant relation. The inelastic part of the free energy is a quadratic function of the integrated shear rates and corresponding internal variables being equivalent to backstresses in order to consider kinematic hardening phenomena on the slip system level. The evolution equations for the shears, backstresses and crystallographic orientations are thermomechanically consistent in the sense that they are compatible with the entropy inequality. While the general theory applies to all types of lattices, specific test calculations refer to cubic symmetry (fcc) and small elastic strains. The simulations of simple tension and compression processes of a single crystal illustrates the development of the crystallographic axes according to the proposed evolution equation. In order to simulate the behaviour of a polycrystal the initial orientations of the anisotropy axes are assumed to be space-dependent but piecewise constant, where each region of a constant orientation corresponds to a grain. The results of the calculation show that the initially isotropic distribution of the orientation changes in a physically reasonable manner and that the intensity of this process-induced texture depends on the specific choice of the material constants.  相似文献   

4.
Stress-induced surface instability and evolution of epitaxial thin films leads to formation of a variety of self-assembled surface patterns with feature sizes at micro- and nanoscales. The anisotropy in both the surface and bulk properties of the film and substrate has profound effects on the nonlinear dynamics of surface evolution and pattern formation. Experimentally it has been demonstrated that the effect of anisotropy strongly depends on the crystal orientation of the substrate surface on which the film grows epitaxially. In this paper we develop a nonlinear model for surface evolution of epitaxial thin films on generally anisotropic crystal substrates. Specifically, the effect of bulk elastic anisotropy of the substrate on epitaxial surface pattern evolution is investigated for cubic germanium (Ge) and SiGe films on silicon (Si) substrates with four different surface orientations: Si(0 0 1), Si(1 1 1), Si(1 1 0), and Si(1 1 3). Both linear analysis and nonlinear numerical simulations suggest that, with surface anisotropy neglected, ordered surface patterns form under the influence of the elastic anisotropy, and these surface patterns clearly reflect the symmetry of the underlying crystal structures of the substrate. It is concluded that consideration of anisotropic elasticity reveals a much richer dynamics of surface pattern evolution as compared to isotropic models.  相似文献   

5.
A method of averaging the data on the anisotropic elastic constants of a material is presented. The anisotropic elastic constants are represented by the elasticity tensor which is expressed as a second rank tensor in a space of six dimensions. The method consists of averaging eigenbases of different measurements of the elasticity tensor, then averaging the eigenvalues referred to the average eigenbasis. The eigenvalues and eigenvectors are obtained by using a representation of the stress-strain relations due, in principle, to Kelvin [17, 18]. The formulas for the representation of the averaged elasticity tensor are simple and concise. The applications of these formulas are illustrated using previously reported data, and are contrasted with the traditional analysis of the same data by Hearmon [9]. An interesting result that emerges from this analysis is a method dealing with variable composition anisotropic elastic materials whose elastic constants depend upon the particular composition. In the case of porous isotropic materials, for example, it is customary to regress the Young's modulus against porosity. The results of this paper suggest a structure or paradigm for extending to anisotropic materials this empirical method of regressing elastic constant data against composition or porosity.  相似文献   

6.
A constitutive model for anisotropic elastoplasticity at finite strains is developed together with its numerical implementation. An anisotropic elastic constitutive law is described in an invariant setting by use of structural tensors and the elastic strain measure Ce. The elastic strain tensor as well as the structural tensors are assumed to be invariant in relation to superimposed rigid body rotations. An anisotropic Hill-type yield criterion, described by a non-symmetric Eshelby-like stress tensor and further structural tensors, is developed, where use is made of representation theorems for functions with non-symmetric arguments. The model also considers non-linear isotropic hardening. Explicit results for the specific case of orthotropic anisotropy are given. The associative flow rule is employed and the features of the inelastic flow rule are discussed in full. It is shown that the classical definition of the plastic material spin is meaningless in conjunction with the present formulation. Instead, the study motivates an alternative definition, which is based on the demand that such a quantity must be dissipation-free, as the plastic material spin is in the case of isotropy. Equivalent spatial formulations are presented too. The full numerical treatment is considered in Part II.  相似文献   

7.
While the conditions for the onset of strain localization in inelastic materials with isotropic elasticity have been extensively studied in recent years, few attempts have been devoted to investigate the effect of anisotropy and in particular the influence of the anisotropic elastic behavior on the localization phenomenon. In Part I of this paper, the localization analysis will be performed for an elastoplastic von Mises material with transversely isotropic elasticity subjected to uniaxial tension. Numerical and analytical results showing the influence of the deviation from isotropic elasticity on the onset of strain localization are presented. The anisotropic elastic behavior may substantially trigger the shear band initiation and modify the corresponding failure pattern. These observations become critical for highly damaged materials. Further developments concerning both transversely isotropic elasticity and plasticity are given in Part II of the paper.  相似文献   

8.
We consider a model for the elastic behavior of a polycrystalline material based on volume averages. In this case the effective elastic properties depend only on the distribution of the grain orientations. The aggregate is assumed to consist of a finite number of grains each of which behaves elastically like a cubic single crystal. The material parameters are fixed over the grains. An important problem is to find discrete orientation distributions (DODs) which are isotropic, i.e., whose Voigt and Reuss averages of the grain stiffness tensors are isotropic. We succeed in finding isotropic DODs for any even number of grains N≥4 and uniform volume fractions of the grains. Also, N=4 is shown to be the minimum number of grains for an isotropic DOD. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
We present a formulation of continuum damage in glacier ice that incorporates the induced anisotropy of the damage effects but restricts these formally to orthotropy. Damage is modeled by a symmetric second rank tensor that structurally plays the role of an internal variable. It may be interpreted as a texture measure that quantifies the effective specific areas over which internal stresses can be transmitted. The evolution equation for the damage tensor is motivated in the reference configuration and pushed forward to the present configuration. A spatially objective constitutive form of the evolution equation for the damage tensor is obtained. The rheology of the damaged ice presumes no volume conservation. Its constitutive relations are derived from the free enthalpy and a dissipation potential, and extends the classical isotropic power law by elastic and damage tensor dependent terms. All constitutive relations are in conformity with the second law of thermodynamics.PACS 83.60.Df, 62.20.Mk  相似文献   

10.
Finite element (FE) simulations of the simple shear test were conducted for 1050-O and 6022-T4 aluminum alloy sheet samples. Simulations were conducted with two different constitutive equations to account for plastic anisotropy: Either a recently proposed anisotropic yield function combined with an isotropic strain hardening law or a crystal plasticity model. The FE computed shear stress–shear strain curves were compared to the experimental curves measured for the two materials in previous works. Both phenomenological and polycrystal approaches led to results consistent with the experiments. These comparisons lead to a discussion concerning the assessment of anisotropic hardening in the simple shear test.  相似文献   

11.
The effective stress concept, now classical in continuum damage mechanics, is generalized to the case of an initial anisotropy. In order to be used for both damage–elasticity and damage–(visco-)plasticity coupling, the effective stress should not depend on the elastic properties. Kelvin decomposition of the elasticity tensor allows to define such a stress for isotropic and cubic symmetries. For other material symmetries, the concept of multiple effective stresses is proposed. To cite this article: R. Desmorat, C. R. Mecanique 337 (2009).  相似文献   

12.
The effective elastic properties of a polycrystalline material depend on the single crystal elastic constants of the crystallites comprising the polycrystal and on the manner in which the crystallites are arranged. In this paper we apply the techniques of homogenization to put the problem of determining effective elastic constants in a precise mathematical framework that permits us to derive an expression for the effective elasticity tensor. We also study how the homogenized elasticity tensor changes as the probability characterizing the ensemble changes. Under the assumption that the field of orientations of the crystallographic axes of the crystallites is an independent random field, we show that our theory is compatible with the formulation used in texture analysis. In particular, we are able to prove that the physical assumption made by [10] in his study of weakly-textured polycrystals holds true. In addition, we establish some elementary bounds on the material constants that characterize the effective elasticity tensor of weakly-textured orthorhombic aggregates of cubic crystallites. Accepted: (June 15, 1999)  相似文献   

13.
The paper discusses the derivation and the numerical implementation of a finite strain material model for plastic anisotropy and nonlinear kinematic and isotropic hardening. The model is derived from a thermodynamic framework and is based on the multiplicative split of the deformation gradient in the context of hyperelasticity. The kinematic hardening component represents a continuum extension of the classical rheological model of Armstrong–Frederick kinematic hardening. Introducing the so-called structure tensors as additional tensor-valued arguments, plastic anisotropy can be modelled by representing the yield surface and the plastic flow rule as functions of the structure tensors. The evolution equations are integrated by a new form of the exponential map that preserves plastic incompressibility and uses the spectral decomposition to evaluate the exponential tensor functions in closed form. Finally, the applicability of the model is demonstrated by means of simulations of several deep drawing processes and comparisons with experiments.  相似文献   

14.
为了推导多晶体材料的有效弹性刚度张量,给出立方晶粒任意集合的格林函数封闭但近似的表达式,该格林函数表达式包含三个单晶弹性常数和多晶体材料五个织构系数,它考虑取向分布函数的影响直至织构系数的线性项,它适用于弱织构多晶体材料或具有弱各向异性晶粒的多晶体材料(如金属铝),它与Nishioka格林函数近似式的比较通过三个算例给出;Synge的格林函数积分式则直接通过数值计算完成,它可作为问题的精确解供参考.该文还简单介绍了多晶体材料有效弹性刚度张量的推导过程,并把所得结果和有限元计算结果进行比较。  相似文献   

15.
Dynamic deformation and failure mechanisms in polycrystalline ceramics are investigated through constitutive modeling and numerical simulation. Two ceramics are studied: silicon carbide (SiC, hexagonal crystal structure) and aluminum oxynitride (AlON, cubic crystal structure). Three dimensional finite element simulations incorporate nonlinear anisotropic elasticity for behavior of single crystals within polycrystalline aggregates, cohesive zone models for intergranular fracture, and contact interactions among fractured interfaces. Boundary conditions considered include uniaxial strain compression, uniaxial stress compression, and shear with varying confinement, all at high loading rates. Results for both materials demonstrate shear-induced dilatation and increasing shear strength with increasing confining pressure. Failure statistics for unconfined loading exhibit a smaller Weibull modulus (corresponding to greater scatter in peak failure strength) in AlON than in SiC, likely a result of lower prescribed cohesive fracture strength and greater elastic anisotropy in the former. In both materials, the predicted Weibull modulus tends to decrease with an increasing number of grains contained in the simulated microstructure.  相似文献   

16.
This paper aims at establishing an anisotropic stress expression for unsaturated pendular-state granular soils. Using the second-order fabric tensor, we formulate a micromechanics scheme of soils with statistically averaging method, and reveal that the macroscopic average stress of unsaturated granular soils in pendular-state is not isotropic. Not only is the stress from contact forces anisotropic due to the fabric, but also the capillary stress is directional dependent, which is different from the common point that the capillary stress is isotropic. The capillary stress of unsaturated pendular-state granular soils is determined by the orientation distribution of contact normals, so it is closely related to the initial and induced anisotropy of soils. Finally, DEM numerical simulations of triaxial compression tests of pendular-state soils at different degrees of saturation are used to verify the existence of above anisotropy of stresses.  相似文献   

17.
The general form of the term whose addition to the left-hand side of the compatibility equation in stresses in anisotropic elasticity symmetrizes the rank four differential tensor operator of these equations is obtained. In the case of an arbitrary type of anisotropy, this term contains two arbitrary parameters of dimension of elastic compliances. The symmetrized compatibility equations themselves contain only one of these parameters, and the combination of the terms with this parameter can be separated from the terms containing the tensor of elastic compliances.  相似文献   

18.
EIGEN THEORY OF VISCOELASTIC MECHANICS FOR ANISOTROPIC SOLIDS   总被引:4,自引:0,他引:4  
Anisotropic viscoelastic mechanics is studied under anisotropic subspace. It is proved that there also exist the eigen properties for viscoelastic medium. The modal Maxwell's equation, modal dynamical equation (or modal equilibrium equation) and modal compatibility equation are obtained. Based on them, a new theory of anisotropic viscoelastic mechanics is presented. The advantages of the theory are as follows: 1) the equations are all scalar, and independent of each other. The number of equations is equal to that of anisotropic subspaces, 2) no matter how complicated the anisotropy of solids may be, the form of the definite equation and the boundary condition are in common and explicit, 3) there is no distinction between the force method and the displacement method for statics, that is, the equilibrium equation and the compatibility equation are indistinguishable under the mechanical space, 4) each model equation has a definite physical meaning, for example, the modal equations of order one and order two express the volume change and shear deformation respectively for isotropic solids, 5) there also exist the potential functions which are similar to the stress functions of elastic mechanics for viscoelastic mechanics, but they are not man-made, 6) the final solution of stress or strain is given in the form of modal superimposition, which is suitable to the proximate calculation in engineering.  相似文献   

19.
In the present work a novel inelastic deformation caused internal dissipation inequality by isotropy is revealed. This inequality has the most concise form among a variety of internal dissipation inequalities, including the one widely used in constitutive characterization of isotropic finite strain elastoplasticity and viscoelasticiy. Further, the evolution term describing the difference between the rate of deformation tensor and the “principal rate” of the elastic logarithmic strain tensor is set, according to the standard practice by isotropy, to equal a rank-two isotropic tensor function of the corresponding branch stress, with the tensor function having an eigenspace identical to the eigenspace of the branch stress tensor. Through that a general form of evolution equation for the elastic logarithmic strain is formulated and some interesting and important results are derived. Namely, by isotropy the evolution of the elastic logarithmic strain tensor is embodied separately by the evolutions of its eigenvalues and eigenprojections, with the evolution of the eigenprojections driven by the rate of deformation tensor and the evolution of the eigenvalues connected to specific material behavior. It can be proved that by isotropy the evolution term in the present dissipation inequality stands for the essential form of the evolution term in the extensively applied dissipation inequality.  相似文献   

20.
The existence of frequency-dependent fundamental solutions for anisotropic, inhomogeneous continua under plane strain conditions is a necessary pre-requisite for studying wave motion, either in geological media or in composites with both depth and direction-dependent material parameters. The path followed herein for recovering such types of solutions is (a) to use a simple algebraic transformation for the displacement vector so as to bring about a governing partial differential equation of motion with constant coefficients, albeit at the cost of introducing a series of constraints on the types of material profiles; (b) to carefully examine these constraints, which reveal a rather rich range of possible variations of the elastic moduli in both vertical and lateral directions; and (c) to use the Radon transformation for handling material anisotropy. Depending on the type of constraints that have been introduced, two basic classes of materials are identified, namely ‘Case A’ where further restrictions are placed on the elasticity tensor and ‘Case B’ where further restrictions are placed on the material profile. We note at this point that for isotropic materials, the elasticity tensor constraints correspond to equal Lamé constants or, alternatively, to a fixed Poisson's ratio. The present methodology is quite general and the homogeneous anisotropic medium, as well as the inhomogeneous isotropic one, can both be recovered as special cases from the results given herein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号