首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The high temperature kinetics of NH in the pyrolysis of isocyanic acid (HNCO) have been studied in reflected shock wave experiments. Time histories of the NH(X3Σ?) radical were measured using a cw, narrow-linewidth laser absorption diagnostic at 336 nm. The second-order rate coefficients of the reactions: (1) were determined to be: cm3?mol?1?s?1, where f and F define the lower and upper uncertainty limits, respectively. The data for k1a are somewhat better fit by:   相似文献   

2.
3,3-Dimethylbutanol-2 (3,3-DMB-ol-2) and 2,3-dimethylbutanol-2 (2,3-DMB-ol-2) have been decomposed in comparative-rate single-pulse shock-tube experiments. The mechanisms of the decompositions are The rate expressions are They lead to D(iC3H7? H) – D((CH3)2(OH) C? H) = 8.3 kJ and D(C2H5? H) – D(CH3(OH) CH? H) = 24.2 kJ. These data, in conjunction with reasonable assumptions, give and The rate expressions for the decomposition of 2,3-DMB-1 and 3,3-DMB-1 are and   相似文献   

3.
The pyrolysis of isobutane was investigated in the ranges of 770° to 855°K and 20 to 150 Torr at up to 4% decomposition. The reaction is homogeneous and strongly self-inhibited. A simple Rice-Herzfeld chain terminated by the recombination of methyl radicals is proposed for the initial, uninhibited reaction. Self-inhibition is due to abstraction of hydrogen atoms from product isobutene giving resonance-stabilized 2-methylallyl radicals which participate in termination reactions. The reaction chains are shown to be long. It is suggested that a previously published rate constant for the initiation reaction (1) is incorrect and the value k1 = 1016.8 exp (?81700 cal mol?1/RT)s?1 is recommended. The values of the rate constants for the reactions (4i) (4t) (8) are estimated to be and From a recalculation of previously published data on the pyrolysis of isobutane at lower temperatures and higher pressures, the value k11c, = 109.6 cm3 mol?1 s?1 is obtained for the rate constant of recombination of t-butyl. A calculation which is independent of any assumed rate constants or thermochemistry shows that the predominant chain termination reaction is the recombination of two methyl radicals in the conditions of the present work and the recombination of two t-butyl radicals in those of our previous study at lower temperatures and higher pressures.  相似文献   

4.
Reactions of atomic oxygen with isocyanic acid (HNCO) have been studied in incident and reflected shock wave experiments using HNCO/N2O/Ar mixtures. Quantitative time-histories of the NH(X3Σ?) and OH(X2Πi) radicals were measured behind the shock waves using cw, narrow-linewidth laser absorption at 336 nm and 307 nm, respectively. The second-order rate coefficients of the reactions: and were determined from early-time NH and OH formation rates, with least-squares two-parameter fits of the results given by: and cm3 mol?1 s?1. The minimum and maximum rate constant factors (?,F) define the lower and upper uncertainty limits, respectively. An upper limit on the rate coefficient of was determined to be: .  相似文献   

5.
The reactions where Y = CH3 (M), C2H5 (E), i? C3H7 (I), and t? C4H9 (T) have been studied between 488 and 606 K. The pressures of CHD ranged from 16 to 124 torr and those of YE from 57 to 625 torr. These reactions are homogeneous and first order with respect to each reagent. The rate constants (in L/mol·s) are given by The Arrhenius parameters are used as a test for a biradical mechanism and to discuss the endo selectivity of the reactions.  相似文献   

6.
The kinetics of the gamma-radiation-induced free radical chain reaction in solutions of C2Cl3F in cyclohexane (RH) was investigated over a temperature range of 87.5–200°C. The following rate constants and rate constant ratios were determined for the reactions: In competitive experiments in ternary solutions of C2Cl4 and C2Cl3F in cyclohexane the rate constant ratio k2c/k2a was determined By comparing with previous data for the addition of cyclohexyl radicals to other chloroethylenes it is shown that in certain cases the trends in activation energies for cyclohexyl radical addition can be correlated with the C? Cl bond dissociation energies in the adduct radicals.  相似文献   

7.
The pyrolyses of endo- and exo-5-methylbicyclo (2.2.2) oct-2-ene (endo- and exo-MBO) have been studied between 608 and 679°K at pressures between 7 and 37 torr. These reactions correspond to parallel first-order eliminations of propene and ethylene: The rate constants (in sec?1) for endo-MBO are given by and those for exo-MBO by Reaction mechanisms involving diradicals are shown to be compatible with the experimental results. The heats of formation and the entropies of endo and exo-MBO are estimated.  相似文献   

8.
The overall reaction (1) occurs readily in the gas phase, even at room temperature in the dark. The reaction is much faster than the corresponding process and does not involve the normal bromination mechanism for gas phase reactions. Reaction (1) is probably heterogeneous although other mechanisms cannot be excluded. The overall reactions (1) (2) proceed, for all practical purposes, completely to the right-hand side in the vapor phase. The expected mechanism is (3) (4) (5) (6) (7) where reaction (3) is initiated thermally or photochemically. Reaction (4) is of interest because little kinetic data are available on reactions involving abstraction of halogen by halogen and also because an accurate determination of the activation energy E4 would prmit us to calculate an acccurate value of the bond dissociation energy D(CH3? I).  相似文献   

9.
The reaction of atomic hydrogen with isocyanic acid (HNCO) to produce the amidogen radical (NH2) and carbon monoxide, has been studied in shock-heated mixtures of HNCO dilute in argon. Time-histories of the ground-state NH2 radical were measured behind reflected shock waves using cw, narrowlinewidth laser absorption at 597 nm, and HNCO time-histories were measured using infrared emission from the fundamental v2-band of HNCO near 5 μm. The second-order rate coefficient of reaction (2(a)) was determined to be: cm3 mol?1 s?1, where f and F define the lower and upper uncertainty limits, respectively. An upper limit on the rate coefficient of was determined to be:   相似文献   

10.
A transformation exists which allows the general Riccati equation to be written in a simpler form: The transformed equation has the equivalent nonlinear Hammerstein integral equation if the kernel N(r, r′) satisfies three conditions: and and A solution of the nonlinear integral equation is devised by repeatedly integrating the Hammerstein equation. During this procedure the kernel generates an equation that contains only coefficients of β(r)0 and β(r)1. As a result, after truncating at the end of the nth cycle, it is a simple matter to write down a Padé-type approximation: all coefficients in this approximation are capable of being evaluated in terms of simple algebraic formulations of P(r), R(r), and integrals over P(r). The zeroes of the denominator of the Padé-type approximation define the points where singularities occur in β(r).  相似文献   

11.
The thermal decomposition of butene-2-cis at low conversion and its effect on the pyrolysis of propane have been studied in the temperature range 779-812 K. It was established that 2-butene decomposes in a long-chain process, with the chain cycle (Besides the radical path, the molecular reaction can also play a role in the formation of the products.) The thermal decomposition of propane is considerably inhibited by 2-butene, which can be explained by the fact that the less reactive radicals formed in the reactions between the olefin and the chain-carrying radicals regenerate the chain cycle more slowly than the original radicals in the above chain cycle or in the reactions The reactions of the 2-propyl radical are further initiation steps. The ratios of the rate coefficients of the elementary steps of the decomposition (Table III) have been determined via the ratios of the products. Estimation of the radical concentrations indicated that only the methyl, 2-propyl and methylallyl radicals are of importance in the chain termination. On the basis of the inhibition-influenced curves, the role of the bimolecular initiation steps. could be clarified in the presence of 2-butene.  相似文献   

12.
The thermal isomerization of cis-hexatriene (cHT) to cyclohexadiene (CHD) and the dimerization of CHD and trans-hexatriene (tHT) in the liquid phase in the temperature range 380 K-473 K are reported. The rate coefficients are: for the cHT to CHD isomerization for tHT dimerizationlog and for CHD dimerization; endo form exo form © 1993 John Wiley & Sons, Inc.  相似文献   

13.
Cyclopentane has been decomposed in comparative-rate single-pulse shock-tube experiments. The pyrolytic mechanism involves isomerization to 1-pentene and also a minor pathway leading to cyclopropane and ethylene. This is followed by the decomposition of 1-pentene and cyclopropane. The rate expressions over the temperature range of 1000°–1200° K are Details of the cyclopentane decomposition processes are considered, and it appears that if the trimethylene radical is an intermediate, then ΔHf(trimethylene) ≤ 280 kJ/mol at 300°K.  相似文献   

14.
Chloroethanes react with aqueous caustic to yield either elimination or substitution products. The reaction rates were measured for the dichloroethanes, trichloroethanes, tetrachloroethanes, and pentachloroethane between 283 and 353°K. The constants of HCl eleminations referring to the rate equation are given by all rate constants being in 1./mole·s and R in cal/mole· deg. With ethyl chloride, 1,1-dichloroethane, and 1,1,l-trichloroethane, the elimination is not observed and a slow substitution takes place. The influence of chlorine substituents on both sides of the molecule on mechanism and rate parameters is discussed.  相似文献   

15.
On the basis of the thermal decomposition of mixtures of propylene and propane with molar ratios of 0.0–0.33 in the temperature range 779–812K, the influencing functions describing the inhibition by propylene of the decomposition of propane were determined. The rate-reducing effect is explained mainly by the reactions (in which .R = .H, .CH3 and 2-?3H7) and also by the addition reactions It was established that the bulk of the allyl radicals formed participate in the chain step, but, due to their lower reactivity, they restore the decomposition chain more slowly than the original radicals do. From the characteristic change in the ratio υ/υ, the rate ratios of hydrogenabstraction reaction by radicals from propylene and propane could be determined. In these reactions there was no significant difference between the selectivities of the radicals. For an interpretation of the changes, the decomposition mechanism must be completed with the reaction Evaluation of the influencing curves revealed that the initiation reactions must be taken into account. By parameter estimation we have determined the rate ratios characterizing the above initiation reactions, the unimolecular decomposition of propane, hydrogen abstraction by radicals from propane and propylene, intermolecular isomerization of the 2-propyl radical via propane and propylene, and abstraction of propane hydrogens by the ethyl and methyl radicals; these are given in Tables II.  相似文献   

16.
The kinetics of the thermal bromination reaction have been studied in the range of 173–321°C. For the step we obtain where θ=2.303RT cal/mole. From the activation energy for reaction (11), we calculate that This is compared with previously published values of D(CF3?I). The relevance of the result to published work on kc for a combination of CF3 radicals is discussed.  相似文献   

17.
The thermal dissociation of COS was investigated in shock waves with argon as carrier gas. The concentration was varied between 0.05 and 0.5% COS in argon, the total density from 2.5 × 10?5 mole/cm3 to 2.5 × 10?3 mole/cm3. Temperatures between 1500°K and 3100°K were applied. For the reaction the rate constant was found to be in the low pressure range of the unimolecular reaction and in the high pressure range.  相似文献   

18.
Arrhenius parameters have been measured for the abstraction of hydrogen from the C Si, Ge, and Sn tetramethyls: The rate constants correlate with the proton chemical shift, which is related to a polar effect. In all cases except carbon, a hot-molecule β-fluorine rearrangement-elimination reaction occurs following radical combination: We suggest the occurrence of a radical exchange reaction for the Si, Sn, and Ge systems, with kexchange (CF3 + Sn(Me)4) ~ 107 ml m?1 s?1.  相似文献   

19.
The sublimation pressure of ThI4 has been measured by the Knudsen effusion method and found to be . Simultaneously with the sublimation of ThI4 there is a small dissociation to lower iodide and iodine. The dissociation pressure associated with the reaction 2 ThOI2 = ThO2 + ThI4 is The molar heat capacity of solid ThI4 has been determined calorimetrically to be 146 J K?1 mol?1, the heat of fusion is approximately 48 kJ mol?1. The standard entropy of solid ThOI2 is calculated to be 145 J K?1 mol?1.  相似文献   

20.
Cyclopropyl cyanide isomerizes in the gas phase at 660°–760°K and 2–89 torr to give mainly cis- and trans-crotonitrile and allyl cyanide, with traces of methacrylonitrile. The reactions are first order, homogeneous, and unaffected by the presence of radical-chain inhibitors. The rate constants are given by Overall: cis-Crotonitrile: trans-Crotonitrile: Allyl cyanide: where the error limits are standard deviations. On the basis of a biradical mechanism, it is deduced that the ? CH? CN radical center is resonance stabilized by ca. 30 kJ mole?1. Approximate equilibrium data are given for interconversion of the 1- and 3-cyanopropenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号