首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We calculate the concentration of plasma and gas-temperature components in a contracted filament of a glow capillary discharge (R = 0.75 mm) in xenon for pressures of P = 100 and 400 Torr and currents of I = 6–15 mA for cases of with and without cryogenic cooling of the discharge. We find that the gas temperature in the channel of the glow discharge has a value of 1000–2000 K, the concentration of xenon excimers attains a maximum at the boundary of the filament with a value of 1010–1011 cm−3, and the efficiency of electric energy transformation into excimer radiation energy has a value of 0.1–5%.  相似文献   

2.
We investigate theoretically the formation of a plasma in a plane layer of polymer foam (density ρ = 0.002 g/cm3 and thickness 800 μm) under the action of an external source of soft X-ray radiation under the conditions of PHELIX experiments. The incident flux is assumed to have a Planck’s distribution over the spectrum with T rad = 20–40 eV. In numerical calculations, the flux of incident X-ray radiation and the spectral constants of the target substance are varied. The action of an external X-ray radiation source on a low-density foam substance with a density of 2 mg/cm3 causes a plasma to be formed with relatively homogeneous profiles of density and temperature T = 15–35 eV. Absorption of externalradiation energy is distributed in the volume. The plasma temperature increases with increase in the external energy, and the energy passed through the plasma also increases. The results prove to be sensitive to the values of optical constants used in numeral simulation. The spectral flux of external radiation passed through the plasma is chosen as a criterion of correctness of the optical constants used in the calculations. In future experiments using the PHELIX facility, we plan to investigate the slowing-down of an ion beam in a plasma formed as a result of indirect heating of low-density polymer triacetate cellulose (TAC) foam with densities ρ = 0.001–0.01 g/cm3 under the action of a pulse of X-ray radiation, into which the laser radiation is preliminarily transformed.  相似文献   

3.
The spectrum of visible radiation from an inhomogeneous cesium-plasma column is evaluated in the approximation of locally thermodynamically equilibrium plasma. The plasma parameters correspond to a pulsed-periodic low-power discharge at pressures of 0.1–1.0 atm and the axial temperature T=5500 K. Under these conditions, the visible spectrum of the cesium plasma changes from discrete (line) to continuous as the pressure varies from 0.1 to 1.0 atm. This is associated largely with an increase in the intensity of the 6P and 5D recombination continua and an appreciable shift of the thresholds of the continua toward larger wavelengths (by ≈100 nm for 6P and by ≈150 nm for 5D) when the plasma density rises to ≈4×1017 cm−3. In this case, the optical thickness of the plasma column approaches unity and the average luminous flux per unit length of the arc column is close to 6500 lm/cm at the column radius R=2 mm and a duty ratio of 0.1.  相似文献   

4.
The complex permittivities of poly(vinylidene fluoride)/poly(methyl methacrylate) (PVDF/PMMA) blends have been measured under variation of temperature T(20°-60°C), frequency v(5 Hz-300 kHz), and hydrostatic pressure p (0-260 MPa). The values can be represented by a master curve with the shift factors △p/△ log (v/Hz) = ?140 MPa at room temperature and △ (1 /T) /△ log (v/Hz) = ?2. 10?4 K?1 at atmospheric pressure. The dependence of the activation energy △E A on pressure p is then given by △E A=(100 + 0.02 MPa?1 p) kJ/mol. Furthermore, the results indicate that the β-relaxation of PVDF is due to motions in the crystal-amorphous interphase. The interactions between the two polymers, which are miscible at all compositions, disturb the correlations between the PVDF monomer units at that location as well as the mobility of the PMMA side group.  相似文献   

5.
Abstract

The shock adiabat for liquid xenon in the density range of 5.2–7.9 g/cm3 and pressure range of 8–70 GPa was investigated. The brightness temperature of a shock wave front from 5000 K to ?15,000 K, as well as the electrical conductivity behind the front from 4·103 to 1.2·105 1/Ohm m, were measured. X-ray technique was used to measure quasi-isentropic compression of liquid xenon up to ~13 g/cm3.

The equations of state for liquid and solid phases of xenon were found. Anomalous behavior of xenon at p=8.37 g/cm3 was revealed, that is due to a structural transition.  相似文献   

6.
The concentration dependence of xenon plasma with caesium as additive in the temperature region of 2 000 K to 20 000 K has been analysed. Plasma has been considered as weakly nonideal in the complete local thermodynamic equilibrium and the interaction between plasma and vessel walls was not taken into account. The values of some of the parameters for nonideality of plasma with 1% of caesium (=0·01010) and 10% of caesium (=0·11111) are computed, for initial pressure in plasma ofp 0=13 000 Pa and initial temperatureT 0=1 000 K. Also the ratio of electrical conductivity of plasma computed by Lorentz's formula and electrical conductivity computed by Spitzer's formula in the same temperature interval has been analysed.  相似文献   

7.
The lasing on the electronic transitions of xenon and neon is studied. It is demonstrated that plasma-cathode accelerators serve as effective sources for the pumping of low-threshold lasers (W < 100 W/cm3). The laser energy in xenon at the wavelength λ = 1.73 μm is 5 J at an efficiency of 2%, and the laser energy in neon at the wavelengths λ = 585.3 nm is 0.5 J at an efficiency of 0.3%. The repetitively pulsed mode of the xenon and neon lasers carried out at a repetition rate of 50 Hz. The radiation energy of a wide-aperture laser with an active volume of 600 l is 100 (0) J for a wavelength of 1.73 (2.03) μm at an efficiency of 2% (1%). Original Text ? Astro, Ltd., 2006.  相似文献   

8.
Rare gas plasmas at high temperatures and pressures, produced by explosive shock fronts, are explored using laser diagnostics. The analysis of the response of a dense plasma to an electromagnetic wave of moderate-intensity proves successful for investigating properties and the validity of physical models describing the behaviour of dense and non-ideal plasmas. We present new experimental data for the reflectivity of oblique incidence of polarized electromagnetic waves on the front of shock-compressed xenon plasmas. The optical properties of strongly correlated plasma were studied in the near-infrared and green spectral regions at a plasma mass density ρ = 0.83 g/cm3 and temperature T = 32900 K. The spatial parameters of the plasma transition shock-front layer are determined by solving numerically the electromagnetic field equations.  相似文献   

9.
The thermodynamic properties of the adsorption of xenon on the stepped Pd(s)[8(100)×(110)] surface have been studied over a wide range of pressure (5×10?11 to 1×10?4 Torr) and temperature (40–140 K). We have measured adsorption isobars using AES in order to evaluate the surface coverage. By choosing pressure and temperature we have studied under equilibrium conditions, the successive adsorption of xenon on the steps and on the terraces until the first layer is formed, the condensation of the second layer as well as the formation of xenon multilayers. For a small range of pressure and temperature, adsorption takes place only on the atomic steps. The LEED pattern shows that only every other site along the steps is occupied. The extrapolated initial heat of adsorption for steps is EadS = 10.2 kcal/mol, decreasing monotonically by about 2 kcal/mol as the relative coverage of the step sites increases. The dipole moment of the Xe atoms adsorbed on steps is 1.12 D. During adsorption on the terraces the LEED observations suggest that the xenon adlayer is non-localized up to completion of the hexagonally close packed monolayer. The initial heat of adsorption on the terraces, EadT is 8.2 kcal/mol and decreases continuously to a value of 6.9 kcal/mol for a complete monolayer due to lateral repulsive interactions between the adsorbed xenon atoms. The induced dipole moment of Xe on terraces is reduced to 0.49 D. The 5p12 binding energy of Xe adsorbed on terrace sites is 0.3 eV smaller than that of Xe occuping step sites. The differential molar entropy of the adsorbed layer on the terraces as a function of coverage compares fairly well with the calculated value for an ideally mobile two-dimensional gas. No indication of the growth of two-dimensional xenon islands has been found under these conditions. The isosteric heat of adsorption for the second layer is Eadsec = 5.8 kcal/mol independently of the coverage. The condensation of the second layer is a first order two-dimensional gas ? two-dimensional solid phase transition in opposition to the continuous nature of the adsorption of the first layer (extending over a wide range of temperature for a given pressure). The induced dipole moment is further reduced for the Xe second layer to a value of 0.11 D. Finally, the condensation of multilayers proceeds with a latent heat of transformation of Econd = 3.8 kcal/mol in excellent agreement with the known bulk value for the heat of sublimation of xenon. The line shape of the NVV low energy Auger transitions of xenon or the UPS binding energies of the Xe 5p32,12 spectra allow a clear distinction between first, second and higher layer Xe atoms. We have also established the temperature/pressure conditions for equilibrium between first, second and bulk xenon layers, i.e. a so-called “roughening point”.  相似文献   

10.
A near sonic nitrogen plasma jet operating at pressures between 100 Torr and 1 atm has been investigated spectroscopically. From the absolute emission coefficient of a NI spectral line, local values for the electron temperature Te have been derived. For pressures above 200 Torr, Tg was found to coincide within the limits of experimental error with the gas temperature Tg. The latter quantity has been determined via the relative emission coefficient of selected rotational line components of the N2+ molecular band at 3914 Å. The results of these measurements together with control data for the electron density derived from the continuous emission coefficient indicate that at pressures above 200 Torr the existence of a thermal equilibrium between the degrees of freedom corresponding to particle translation, electron excitation, and ionization can be accepted, at least for the inner zone of the plasma jet. To the contrary, the data for the absolute emission coefficient of N2+ molecular band lines show that the degree of dissociation in the plasma jet is much in excess of that corresponding to equilibrium. This phenomenon can be explained as a result of the rapid temperature decay in the plasma from initially 13000 K in the arc heating zone to T ≦ 9000 K in the plasma jet zone proceeding in a time interval of 10?5 s which is much shorter than the time necessary for adjustment of dissociation equilibrium. In the outer cool zone of the plasma jet, an unusual high intensity of the N2+ radiation was found thus indicating the existence of a nonequilibrium excitation mechanism typical for a decaying nitrogen plasma. From the supernormal high degree of dissociation in the high-speed subatmospheric nitrogen plasma jet, conclusions are drawn with respect to its applicability as source of reactive particles in plasma-chemical experiments.  相似文献   

11.
Results of an experimental study of the kinetics of luminescence observed when a metallic cadmium foil is bombarded in a helium medium by a 3-ns pulsed beam of 150-keV fast electrons are reported. The foil was irradiated at gas pressures from 76 to 2280 Torr. At a foil temperature of T = 240° C, the de-excitation time of the Beitler levels of the Cd II ion was measured as a function of the buffer gas pressure and the constant of collision quenching of the 5s22D5/2 level of Cd II by He atoms was determined as k ≈ 3 × 10-29 cm6/s. The experimental data were compared with calculations performed for the gas—vapor mixture in order to find the fraction of excited Cd II ions in the 5s22D5/2 state produced directly as a result of sputtering of metallic cadmium by high-energy electrons and by components of the helium plasma. At a helium buffer gas pressure of P ≤ 2.5 atm and a temperature of the cadmium target of T = 240° C, the value of this quantity was found to be α = 0.28 + 0.23P (where P is the helium pressure in atmospheres).  相似文献   

12.
The dielectric properties, X-ray emission spectra, and M?ssbauer effect in ceramics made of PbFe1/2Nb1/2O3 (PFN) compound were studied. The relaxation dynamics revealed above Curie temperature TC at a frequency of 3 × 10−2–105 Hz is described in detail. Analysis of the X-ray emission and M?ssbauer spectra showed that at room temperature (T = 300 K), the iron ions in PFN are mainly in the high-spin valence state Fe3+. The M?ssbauer spectral parameters obtained at T = (300, 353, and 393 K) indicate an octahedral environment for Fe3+ in both the ferroelectric and paraelectric phases.  相似文献   

13.
M. B. Smirnov 《Laser Physics》2010,20(5):1009-1018
X-ray radiation is studied for large clusters consisting of 107–1010 atoms and irradiated by an intense laser pulse with an intensity ranged from (1014 up to 1018 W/cm2). The model is developed for such a laser plasma that includes the radiative transitions and the processes of excitation and quenching of multicharged ions of this plasma by electron impact. Due to interaction of a radiating multicharged ion with a surrounding plasma, spectral lines of emission are broaden and neighboring spectral lines are overlapped. As a result, the spectrum of radiation of multicharged ions is transformed into a continuous spectral band. The model under consideration includes important plasma processes including dielectronic recombination, spontaneous radiation, excitation, quenching and ionization of multicharged ions by electron impact. On the basis of the model developed the X-ray spectrum and spectral power are evaluated. In the range of laser intensities under consideration a laser plasma formed contains multicharged ions with charges Z = 26?36 that corresponds to the 3d-electron shell in the xenon case.  相似文献   

14.
ABSTRACT

High pressure hydrous phases with distorted rutile-type structure have attracted much interest as potential water reservoirs in the Earth’s mantle. An in-situ X-ray diffraction study of β-CrOOH was performed at high pressures of up to 6.2?GPa and high-temperatures of up to 700?K in order to clarify the temperature effect on compression behaviors of β-CrOOH. The P-V-T data fitted to a Birch–Murnaghan equation of state yielded the following results: isothermal bulk modulus KT0?=?191(4)?GPa, temperature derivative (?KT/?T)P?=??0.04(2)?GPa?K?1, and volumetric thermal expansion coefficient α?=?3.3(2)?×?10?5?K?1. In this study, at 300?K, the a-axis became less compressible at pressures above 1–2?GPa. We found that the pressure where the slopes of a/b and a/c ratios turned positive increased with temperature. This is the first experimental study indicating the temperature dependence of the change in the axial compressibility in distorted rutile-type M3+OOH.  相似文献   

15.
The equilibrium of a magnetized Helium plasma is disturbed by a pulsed Trivelpiece-Gouldwave. The electrons obtain the energy by linear collisionless wave absorption. The relaxation phenomena of density and energy are explained in terms of two relaxation times τE, τ1 and a quantity giving the additional ionization. These quantities are derived from a small signal fluid model based upon energy and particle balance equations. In the experiment they are taken from the transient curves of Langmuir-probe current, optical line radiation and the noise power at the electron cyclotron frequency. The experimental conditions are: Helium-gas, p = 1 …? 5 Pa, Te = 4 eV, n = 1 …? 5 · 1010 cm?3, B = 6,5 · 10?2 T, 27 MHz rf plasma source, low frequency fluctuation level < 1%, classical losses. The energy relaxation time …?E = 10 …? 15 μs is given by inelastic collision losses. The ionization time constant τ1 is related to the instantaneous ionization frequency during the transient state. It shows a high value at the very beginning of the pulse which must be explained by a tail formation in the distribution function and enhanced radial losses becoming Bohm-like in the transition phase.  相似文献   

16.
We report the effect of using moderate hydrostatic pressure, 40–140?MPa, at moderate temperature (38–58°C) to inactivate Bacillus subtilis spores in McIlvaine's citric phosphate buffer at pH 6. We have investigated several parameters: pressure applied, holding time, pressure cycling, and temperature. The kinetics of spore inactivation is reported. The results show that spore inactivation is exponentially proportional to the time the sample is exposed to pressure. Spore germination and inactivation occur at the hydrostatic pressures/temperature combinations we explored. Cycling the pressure while keeping the total time at high pressure constant does not significantly increase spore inactivation. We show that temperature increases spore inactivation at two different rates; a slow rate below 33°C, and at a more rapid rate at higher temperatures. Increasing pressure leads to an increase in spore inactivation below 95?MPa; however, further increases in pressure give a similar rate kill. The time dependence of the effect of pressure is consistent with the first-order model (R2?>?0.9). The thermal resistance values (ZT) of B. subtilis spores are 30°C, 37°C, and 40°C at 60, 80, 100?MPa. The increase in ZT value at higher pressures indicates lower temperature sensitivity. The pressure resistance values (ZP) are 125, 125 and 143?MPa at 38°C, 48°C, and 58°C. These ZP values are lower than those reported for B. subtilis spores in the literature, which indicates higher sensitivity at pressures less than about 140?MPa. We show that at temperatures <60°C, B. subtilis spores are inactivated at pressures below 100?MPa. This finding could have implications for the design of the sterilization equipment.  相似文献   

17.
The sublimation of krypton at low temperature (25 ? T ? 50 K) is studied by means of high sentivity vibrating quartz microbalances. One of them supports, on its upper electrode, a condensed krypton crystal and allows the number of sublimated atoms per second to be measured, the temperature varying by steps. The evolution of the sublimation lobes versus temperature is determined by three others, situated in the same plane and respectively at 4°, 30° and 60° to the normal to the krypton crystal surface. The experimental results show the effects of radiation energy, partial pressure and thickness of krypton solid, on the krypton sublimation parameters. From the experimental results of the sublimation rate, the vapor pressure versus temperature and energy of activation of krypton sublimation are calculated and compared to results obtained by other authors. On the other hand for T < 42 K, the deviation of the sublimation lobe from Lambert's law increases as the temperature is lowered, i.e. for a lobe represented by cosnθ, n increases as T decreases.  相似文献   

18.
The I–V curves of a thermionic converter were measured for several cesium pressures and various electrode distances, and partial pressures of added xenon as well. The minimum internal voltage drop across the electrode gap was determined and correlated with cesium pressure, spacing and xenon pressure. Without xenon added this voltage drop shows the well-known minimum at an optimum pressure-spacing product ofp Cs d=5·10−2cm·Torr. Only for smaller values of the pressure-spacing product the internal voltage drop can be reduced by the addition of xenon. An interpretation is achieved by a comparatively simple model assuming a uniform electron temperature in the electrode gap. Using this model, the electron temperatures were calculated for various spacings and xenon pressures. Comparing the experimental data of the internal voltage drop and the correspondingly calculated electron temperatures it turns out that, within the framework of the model used, the internal voltage drop is represented by the electron temperature. The electron temperature itself is determined by the ion balance. Presented at the 10th Intersociety Energy Conversion Engineering Conference, Newark, Delaware, USA (1975).  相似文献   

19.
Plasma parameters in the upgraded Trimyx-M Galathea   总被引:1,自引:0,他引:1  
Results are presented from measurements of the plasma parameters in the upgraded Trimyx-M Galathea. After the barrier magnetic field and the energy of the injected hydrogen plasma bunch were increased to B bar ∼ 0.1 T and W 0 ≈ 200 J, respectively, the following plasma parameters were achieved: the density n ∼ 5 × 1013 cm−3, the plasma confinement time τ* = 800–900 μs, the elergy of the confined plasma W 1 ∼ 100 J, the ratio of the plasma pressure to the barrier magnetic pressure β 0 ∼ 0.2, the electron temperature T e ∼ 20 eV, and the ion temperature T i ∼ 2T e . The maximum time during which the plasma density decreased e-fold, τ p , was found to be 300 μs at B bar = 0.1 T, which agrees with the classical transport model.  相似文献   

20.
The high-pressure and high-temperature behaviors of LiF and NaF have been studied up to 37 GPa and 1000 K. No phase transformations have been observed for LiF up to the maximum pressure reached. The B1 to B2 transition of NaF at room temperature was observed at ~28 GPa, this transition pressure decreases with temperature. Unit-cell volumes of LiF and NaF B1 phase measured at various pressures and temperatures were fitted using a P–V–T Birch–Murnaghan equation of state. For LiF, the determined parameters are: α0 = 1.05 (3)×10?4 K?1, dK/dT = ?0.025 (2) GPa/K, V 0 = 65.7 (1) Å3, K 0 = 73 (2) GPa, and K′ = 3.9 (2). For NaF, α0 = 1.34 (4)×10?4 K?1, dK/dT = ?0.020 (1) GPa/K, V 0 = 100.2 (2) Å3, K 0 = 46 (1) GPa, and K′ = 4.5 (1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号