首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A new series of materials have been tested for their suitability as electrophoresis matrices. The mechanical and optical properties of gels composed of polyethyleneglycol (meth)acrylate esters or polyhydroxy (meth)acrylate esters in water and in various concentrations of organic solvents are described. Several crosslinkers including polyethyleneglycol and polyhydroxy di(meth)acrylates, piperazine diacrylate, and bisacrylamide were used in these studies. Electrophoretic migration and separation of a series of protein standards through polyethyleneglycol methacrylate (PEGM) 200, PEGM 400, and glyceryl methacrylate is demonstrated. Further, copolymerization of all of the monomers with acrylamide was performed and the distribution of monomer incorporation into the polymer network calculated. All monomers and copolymers that were examined by IR spectroscopy showed greater than 99% polymerization. These results justify their further study for biomolecule separations.  相似文献   

2.
The influence of various solvents on the copolymerization behavior of methyl methacrylate with styrene has been investigated. In these systems there is a significant solvent effect on both rS and rM which may be attributed to changes in the dielectric constant of the solvents used. The calculated relative reactivity of the polystyryl radical towards the methyl methacrylate monomer increases with increasing solvent polarity, whereas the reactivity of poly(methyl methacrylate) radical towards styrene monomer decreases. The results obtained are discussed taking into account the behavior of both monomers in homopolymerization with the same experimental conditions as in copolymerization.  相似文献   

3.
We report the swelling behavior of chemically crosslinked polyvinyl alcohol (PVA) gels with different degrees of hydrolysis in water, several organic solvents, and their mixed solvents. The gels were dried after gelation and were put into their respective solvents. The gel volume in pure water decreased with increasing temperatures, and the total changes increased with decreasing degrees of hydrolysis. The swelling ratio depends on the solvent and its concentration. In the cases of mixed solvents of methanol–water, ethanol–water, and acetone–water, the gels shrank continuously with increasing concentrations of solvents and reached the collapsed state in the pure organic solvent. In the case of dimethyl sulfoxide (DMSO), on the other hand, the gels shrunk, swelled, and finally reached the swollen state in pure DMSO. Results of measurements using Fourier Transform infrared spectroscopy (FTIR) and X‐ray diffraction (XRD) suggested that crosslinks and microcrystallites were formed due to hydrogen bonds during the drying process after gelation. The hydrogen bonds were partly destroyed in a rich solvent, but the residual hydrogen bonds had an essential role in determining the swelling behavior in a poor solvent. The swelling behavior and the possible phase transition of the present system are discussed in terms of the solubility of polymers with different degrees of hydrolysis in given mixed solvents and in terms of the formation and destruction of physical crosslinks in the chemical PVA gels. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1978–1986, 2010  相似文献   

4.
This paper describes a study of the surface plasticization and antiplasticization of an amorphous and a semicrystalline poly(ether ether ketone) (PEEK) in solvent environments using nanohardness method. A range of solvents (octane, chloroform, tetrachloroethane, acetone, dichlorobenzene, polyethyleneglycol (PEG), methanol and water) based on the Hilderbrand’s Solubility Parameter were selected as solvent environments. The results of the nanoindentation hardness experiments performed on the virgin and the solvent immersed polymeric surfaces are reported. The surface plasticization or antiplasticization is reported on the basis of the softening or the hardening of the near surface layers (?1 μm) after immersion of the polymeric surfaces in the solvent environments. Surface plasticization of the amorphous PEEK has been observed in organic solvents. The chlorine containing solvents have severely degraded the hardness of the amorphous polymer. A surface hardening of the amorphous PEEK has been observed after immersion in water. Semicrystalline PEEK was seen to exhibit a considerable inert behaviour to common organic solvents but chlorinated organic solvents and water have caused a decrease in the surface mechanical properties.  相似文献   

5.
Abstract

Ethyl 3-oxo-4-pentenoate (EAA) and ethyl 4-methyl-3-oxo-4-pentenoate (EMAA) exhibit the coexistence of the ketonic and enolic forms in most organic solvents. Radical copolymerizations of EAA and EMAA with methyl methacrylate (MMA) were carried out at 60 °C in various solvents, and monomer reactivity ratios were estimated. There are minor solvent effects on monomer reactivity ratios rMMA in both EAA/MAA and EM A A/MM A systems. On the other hand, rEAA and rMMA values greatly change with the solvent: The values decrease with an increase in the ketonic fraction of the polymerizable tautomers (EAA and EMAA). Regression analysis of the monomer reactivity ratios with the solvatochromic parameters reveals that polarity of the solvent is the major factor governing the relative reactivity.  相似文献   

6.
Some bis (amino acid) oxalamide gelators form common thermo-reversible gels with various organic solvents but also gels of exceptional thermal stability with some solvents of medium and low polarity; the latter gels can be heated up to 50 degrees C higher temperatures than the bp of the solvent without apparent gel-to-sol transition.  相似文献   

7.
A hydrogel stable in an organic solvent has been developed. This pseudo-solid aqueous gel (PAG) consists of only native gelatin and water, and has been used for immobilization of enzymes. A relatively high amount of gelatin is required in order to obtain stable gels. PAGs containing the enzyme Candida antarctica lipase (SP 525) were successfully used in catalysing the esterification of R/S-(±)-2-octanol and hexanoic acid in hexane. The conversions as well as the enantiomeric excess values of the product, R-(−)-2-octyl hexanoate, were high and comparable to those obtained with microemulsion-based gels. The PAGs containing immobilized lipase gave reproducible results and may be re-used several times. The gels are easy to prepare and use, non-toxic and biocompatible. The PAGs retain their integrity in organic solvents and may be used in preparative-scale synthesis of organic compounds.  相似文献   

8.
Bis(LeuOH) (1a), bis-(ValOH) (2a) and bis(PhgOH) (5a) (Phg denotes (R)-phenylglycine) oxalyl amides are efficient low molecular weight organic gelators of various organic solvents and their mixtures as well as water, water/DMSO, and water/DMF mixtures. The organisational motifs in aqueous gels are dominated primarily by lipophilic interactions while those in organic solvents are formed by intermolecular hydrogen bonding. Most of the gels are thermoreversible and stable for many months. However, 2a forms unstable gels with organic solvents which upon ageing transform into variety of crystalline shapes. For some 1a/alcohol gels, a linear correlation between alcohol dielectric constants (epsilon) and gel melting temperatures (Tg) was found. The 1H NMR and FTIR spectroscopic investigations of selected gels reveal the existence of temperature dependent network assembly/dissolution equilibrium. In the 1H NMR spectra of gels only the molecules dissolved in entrapped solvent could be observed. By using an internal standard, the concentration of dissolved gelator molecules could be determined. In FTIR spectra, the bands corresponding to network assembled and dissolved gelator molecules are simultaneously present. This enabled determination of the Kgel values by using both methods. From the plots of InKgel versus 1/T, the deltaHgel values of selected gels have been determined (-deltaHgel in 10-36 kJ mol(-1) range) and found to be strongly solvent dependent. The deltaHgel values determined by 1H NMR and FTIR spectroscopy are in excellent agreement. Crystal structures of 2a and rac-5a show the presence of organisational motifs and intermolecular interactions in agreement with those in gel fibres elucidated by spectroscopic methods.  相似文献   

9.
The formation of colloid crystals from monodisperse and polymer-modified silica particles in organic solvents was investigated. Maleic anhydride–styrene copolymer-modified silica formed crystals in polar organic solvents, which dissolve the copolymer, while the original colloidal silica formed crystals in organic solvents which were miscible with water. The critical volume fraction in the crystal formation of the polymer-modified silica was lower than that from the unmodified silica in the same solvent. Polystyrene- and poly(methyl methacrylate)-modified silica particles also crystallized in organic solvents, but the features of the formation were different from those of poly(maleic anhydride-styrene)-modified particles. Received: 19 September 1998 Accepted in revised form: 1 January 1999  相似文献   

10.
Novel amphiphilic network polymers consisting of nonpolar, short primary polymer chains and polar, long crosslink units were prepared, and the swelling behavior of resulting amphiphilic gels is discussed by focusing on the influence of characteristic dangling chains; that is, benzyl methacrylate (BzMA) was copolymerized with tricosaethylene glycol dimethacrylate [CH2?C(CH3)CO(OCH2CH2)23OCOC(CH3)?CH2, PEGDMA‐23] in the presence of lauryl mercaptan as a chain‐transfer agent because BzMA forms nonpolar, short primary polymer chains and PEGDMA‐23 as a crosslinker contains a polar, long poly(oxyethylene) unit. The enhanced incorporation of dangling chains into the network polymer was brought by shortening the primary polymer chain length, and copolymerization with methoxytricosaethylene glycol methacrylate, a mono‐ene counterpart of PEGDMA‐23, enforced the incorporation of flexible dangling poly(oxyethylene) chains into the network polymer, although the former dangling chains as terminal parts of primary poly(BzMA) chains were rather rigid. Then, the influence of characteristic dangling chains on the swelling behavior of amphiphilic gels was examined in mixed solvents consisting of nonpolar t‐butylbenzene and polar methanol. The profiles of the solvent‐component dependencies of the swelling ratios were characteristic of amphiphilic gels. The introduction of dangling poly(oxyethylene) chains led not only to an increased swelling ratio but also to sharpened swelling behavior of amphiphilic gels. The swelling response of amphiphilic gels was checked by changing the external solvent polarity. The dangling chains with freely mobile end segments influenced the swelling response of gels. The amphiphilic gels with less entangled, collapsed crosslink units exhibited faster swelling response than the ones with more entangled, collapsed primary polymer chains. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2192–2201, 2004  相似文献   

11.
The possibilities of NMR spectroscopy in studies of interactions in polymer systems are demonstrated on the example of two types of macromolecular complexes: (i) By measuring 1H NMR high resolution line intensities, the formation of ordered associated structures of syndiotactic (s) poly(methyl methacrylate)(PMMA) in mixed solvents was quantitatively characterized. The obtained results permit us to assume that the mechanism by which the solvent affects self-association of s-PMMA involves specific interactions of the solvent molecules with PMMA units. Solid state high resolution 13C NMR spectra of associated s-PMMA gels were also measured and compared with the spectra of a solid s-PMMA sample. (ii) By using 13C solid state NMR spectroscopy, the differences in the structure of the amorphous and crystalline phases in pure poly(ethylene oxide) and its complexes with p-dichlorobenzene or p-nitrophenol were characterized. Prounounced differences also in the dynamic structure of the crystalline phase in these systems are indicated by the relaxation times T1(C), T(C) and T(H).  相似文献   

12.
Recent studies on biocatalysis in water—organic solvent biphasic systems have shown that many enzymes retain their catalytic activities in the presence of high concentrations of organic solvents. However, not all enzymes are organic solvent tolerant, and most have limited and selective tolerance to particular organic solvents. Protein modification or protein tailoring is an approach to alter the characteristics of enzymes, including solubility in organic solvents. Particular amino acids may play pivotal roles in the catalytic ability of the protein. Attaching soluble modifiers to the protein molecule may alter its conformation and the overall polarity of the molecule. Enzymes, in particular lipases, have been chemically modified by attachment of aldehydes, polyethylene glycols, and imidoesters. These modifications alter the hydrophobicity and conformation of the enzymes, resulting in changes in the microenvironment of the enzymes. By these modifications, newly acquired properties such as enhancement of activity and stability and changes in specificity and solubility in organic solvents are obtained. Modified lipases were found to be more active and stable in organic solvents. The optimum water activity (a w ) for reaction was also shifted by using modified enzymes. Changes in enantioselective behavior were also observed.  相似文献   

13.
Isoelectric focusing of human salivary proteins with carrier ampholyte-isoelectric focusing systems requires prior desalting and concentration of samples, a procedure which is time-consuming and requires relatively large volumes of samples. By contrast, immobilized pH gradient gels are more tolerant to salt loads. Thus pretreatment of samples consists only of centrifugation prior to isoelectric focusing. If larger loads (greater than 50 micrograms) are required, the samples may be concentrated by lyophilization and reconstitution in a smaller volume of water or by dialysis against 30% w/v polyethylene glycol. Immobilized pH gradient polyacrylamide gels (incorporating a hybrid carrier ampholyte system) of two pH ranges (pH 4-9 and pH 3.5-5.0) have been used to separate the proteins in human parotid saliva. The effects of urea on focused patterns were studied; in pH 4-9 gels it gave improved resolution of protein bands, whereas in pH 3.5-5.0 gels it prevented protein precipitation. The salivary proteins were then visualized by staining with Coomassie Brilliant Blue G-250 or a silver procedure. Using the latter, 25-30 well-resolved bands were formed on a pH 4-9 gel loaded with 20 micrograms of proteins. The method offers considerable advantages compared with carrier ampholyte-isoelectric focusing.  相似文献   

14.
In this contribution we report on the preparation of thermally responsive supramolecular gels obtained through self-assembling of metallo-organic polymers of lipophilic Fe(II) complexes of 1,2,4-triazole functionalized with octadecyl chains ([Fe(II) (4-octadecyl-1,2,4-triazole)3(ClO4)2]n) in three organic solvents: toluene, cis-decalin and trans-decalin. A gel phase is formed in these solvents by cooling the homogeneous complex solutions below a well-defined temperature, the so-called gelation threshold. These gels are reversible as they form homogeneous solutions upon heating above the melting temperature. The systems have been characterized for their thermal and viscoelastic properties through differential scanning calorimetry and rheological experiments, respectively. The effect of the solvent type and concentration on the gelation behaviour of the metallo-organic polymer has been analysed. The results obtained point to structural differences and different gelation mechanisms for the gels prepared in different solvents and they also suggest the possibility to control the spin-crossover transition temperature associated to the sol-gel transition.  相似文献   

15.
In this work, correlations for the estimation of the infinite dilution activity coefficients of non-polar solvents in polystyrene (PS), poly(vinyl acetate) (PVAc), poly(n-butyl methacrylate) (PBMA), poly(dimethyl siloxane), poly(methyl methacrylate) (PMMA), poly(ethylene oxide) (PEO), poly(vinyl chloride) (PVC), polyisobutylene and polyethylene (PE), and that of polar solvents in PS, PVAc, PBMA, PMMA, PEO, PVC and PE are proposed. A total of 205 polymer/non-polar solvent systems with 1708 data points, and 118 polymer/polar solvent systems with 695 data points were used to develop the correlations. The overall average errors were 9.6% and 11.3%, respectively, significantly lower than other predictive models. Since the new correlations require only the connectivity indices of the solvents in the calculations, and the connectivity indices can be calculated easily once the molecular structure of the substance in question is known, they are easy to apply, and are useful for process design and development.  相似文献   

16.
The self-assembled fibrillar network (SAFIN) organogels of a simple surfactant molecule, sodium laurate (C(11)H(23)COONa, SL), in organic solvents were investigated. The sol-gel transformation temperature depended on the SL concentration, the solvent, and the concentration of Na(+) was evaluated. An important finding is that Na(+) ions play an important role in forming organogels, which was regarded as the induction factor of gelation, but other cations, for instance, Li(+), K(+), Ca(2+), and Mg(2+), do not have this capability. The observations by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) proved that the organogels were network structures with fibers and ribbons by trapping a certain amount of organic solvent. High-resolution TEM (HR-TEM) images indicated that each of the fibers or ribbons was composed of cylindrical micelles. The X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectra demonstrated that SL molecules in gels behave similarly to those in SL crystals. The mechanism of organogel formation was elaborated to provide a better understanding of fibrous surfactant gels in organic solvents.  相似文献   

17.
Room temperature ionic liquids are novel solvents with a rather specific blend of physical and solution properties that makes them of interest for applications in separation science. They are good solvents for a wide range of compounds in which they behave as polar solvents. Their physical properties of note that distinguish them from conventional organic solvents are a negligible vapor pressure, high thermal stability, and relatively high viscosity. They can form biphasic systems with water or low polarity organic solvents and gases suitable for use in liquid–liquid and gas–liquid partition systems. An analysis of partition coefficients for varied compounds in these systems allows characterization of solvent selectivity using the solvation parameter model, which together with spectroscopic studies of solvent effects on probe substances, results in a detailed picture of solvent behavior. These studies indicate that the solution properties of ionic liquids are similar to those of polar organic solvents. Practical applications of ionic liquids in sample preparation include extractive distillation, aqueous biphasic systems, liquid–liquid extraction, liquid-phase microextraction, supported liquid membrane extraction, matrix solvents for headspace analysis, and micellar extraction. The specific advantages and limitations of ionic liquids in these studies is discussed with a view to defining future uses and the need not to neglect the identification of new room temperature ionic liquids with physical and solution properties tailored to the needs of specific sample preparation techniques. The defining feature of the special nature of ionic liquids is not their solution or physical properties viewed separately but their unique combinations when taken together compared with traditional organic solvents.  相似文献   

18.
Counterion‐ and solvent‐specific swelling behaviors were investigated for alkali‐metal poly(styrene sulfonate) (PSSM) gels having different degrees of sulfonation in aqueous organic solvent mixtures [water plus methanol, ethanol, 2‐propyl alcohol, t‐butyl alcohol, dimethyl sulfoxide (DMSO), acetone, acetonitrile, tetrahydrofuran, or dioxane]. With an increasing organic solvent concentration, most gel systems, except for DMSO, showed a volume phase transition. The transition abruptly occurred without significant deswelling in the lower solvent concentration region. Such swelling behavior contrasted with that of other common charged gel systems, including alkali‐metal polyacrylate (PAAM) gels, which showed gel collapse after gradual deswelling with an increasing organic solvent concentration. The dielectric constant at the critical transition point (Dcr) for most mixed solvent systems decreased in the order of PSSK ≥ PSSCs ≥ PSSNa > PSSLi; that is, larger counterion systems were favorable for the transition. The counterion specificity also contrasted with our previous results for PAAM gels: PAANa > PAAK > PAALi ~ PAACs. On the other hand, the solvent specificity for the PSSM gels was similar to that for the PAAM gels; the higher the dielectric constant was of the organic solvent, the higher the Dcr value was at which the transition occurred. These specificities were examined on the basis of the solvation properties of the counterions and polymer charged groups and the solvent properties such as the Gutmann–Mayer donor number and acceptor number. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1166–1175, 2007  相似文献   

19.
A series of low molecular weight organic gelator (LMOG) gel systems sensitive to alkaline/acidic stimuli was established by employing amino acid derivatives of cholesterol as "latent" gelators, which are cholesteryl glycinate (1), cholesteryl L-alaninate, cholesteryl D-alaninate, cholesteryl L-phenyl alaninate, and cholesteryl D-phenyl alaninate. The hydrochloric salts are denoted as 2, 3, 4, 5, and 6, respectively. For the 18 solvents tested, one proved to be a weak gelator and gels only two of the solvents. Its gelation ability, however, was greatly improved by bubbling HCl gas, which was produced by reaction of concentrated sulfuric acid with NaCl, through its solution owing to protonation of its amino group. It was demonstrated that the protonated form of it gelled 14 of the solvents tested. Further investigation revealed that the gels changed into solution with addition of any of the amines, including triethylamine (TEA), diethylamine, ethylenediamine, and NH3. The phase transition could be reversed by further introduction of the acidic gas. SEM measurements showed that 1 self-assembled into different supramolecular structures in different gels. Salt effect studies proved that electrostatic interaction is one of the driving forces for formation of the gels.  相似文献   

20.
L-苯丙氨酸和二(三氯甲基)碳酸酯反应得到的L-苯丙氨酸-N-羧基-环内酸酐(L-Phe-NCA), 在十八胺的引发下开环聚合得到十八烷基-L-苯丙氨酸齐聚物(简称L-Phe-R18). 1H NMR (300 MHz)和FT-IR表征了产物结构, 是平均聚合度为5的齐聚物. L-Phe-R18能在多种有机溶剂中发生聚集和自组装, 并进而在这些有机溶剂中形成热可逆的物理凝胶. 其中, 该齐聚物能在氯苯、二苯醚、甲苯等溶剂中形成透明凝胶. 也能在苯、硝基苯、醋酸丁酯等溶剂中形成非透明凝胶. L-Phe-R18在这些有机溶剂中的最低凝胶化浓度(MGC)在w=0.3%~1%之间. X射线衍射(XRD)数据和场发射扫描电镜(FE-SEM)以及分子模拟表征了L-Phe-R18聚集体的微观形态和可能的聚集方式. 认为L-Phe-R18在有机溶剂中通过分子间氢键、π-π堆积等非共价键相互作用聚集、组装成厚度约为20 nm左右的带状纤维, 溶剂分子以毛细力存在于相互缠绕的纤维网络结构中, 使体系形成稳定的凝胶.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号