首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li2FeSiO4 cathode materials have been prepared by sol-gel method. The effects of carbon sources on the structural, morphological and electrochemical behaviors of Li2FeSiO4 were investigated. The scanning electronic microscope (SEM) and X-ray diffraction powder analysis (XRD) indicate that the obtained samples using different carbon sources possess some difference in the morphology and in the particle size. The sample using the mixture of citric acid and oxalic acid as carbon source has a maximum discharge capacity of 118 mA h g?1 at 0.1 C between 1.8 and 4.5 V. The resulting cyclic voltammograms and electrochemical impedance spectra suggest that the sample using mixed acid as carbon source has smaller polarization and smaller charge transfer impedance.  相似文献   

2.
Platelike CoO/carbon nanofiber (CNF) composite materials with porous structures are synthesized from the thermal decomposition and recrystallization of β-Co(OH)2/CNF precursor without the need for a template or structure-directing agent. As negative electrode materials for lithium-ion batteries, the platelike CoO/CNF composite delivers a high reversible capacity of 700 mAh g−1 for a life extending over hundreds of cycles at a constant current density of 200 mA g−1. More importantly, the composite electrode shows significantly improved rate capability and electrochemical reversibility. Even at a current of 2 C, the platelike CoO/CNF composite maintain a capacity of 580 mAh g−1 after 50 discharge/charge cycles. The improved cycling stability and rate capability of the CoO/CNF composite electrodes may be attributed to synergistic effect of the porous structural stability and improved conductivity through CNF connection.  相似文献   

3.
Electrochemical lithium insertion has been studied in a large number of vanadium oxides with three dimensional framework structure. Several of these oxides have shown high capacities for lithium insertion and good reversibility.Pure solutions of decavanadic acid have shown to undergo spontaneous polycondensation reaction forming sols or gels of highly polymerized vanadium oxides, M w 106. After dehydration a series of xerogels with varying amounts of water, V2O5 · nH2O, can be obtained. The structure of these xerogels consists of ribbons of corner and edge sharing VO6 octahedra stabilized by interlayer water molecules. Under ambient conditions the water content corresponds to n=1.8, but this value can be reversibly changed under mild drying conditions.This report deals with the electrochemical insertion of lithium in dried vanadium oxide xerogels, with special regard to the use of these materials as electrodes in rechargeable lithium batteries.  相似文献   

4.
Carbon cloth modified by hydrothermal treatment in ammonia water is developed as the positive electrode with high electrochemical performance for vanadium redox flow batteries.The SEM shows that the treatment has no obvious influence on the morphology of carbon cloth.XPS measurements indicate that the nitrogenous functional groups can be introduced on the surface of carbon cloth successfully.The electrochemical performance of V(IV)/V(V) redox couple on the prepared electrode is evaluated with cyclic voltammetry and linear sweep voltammetry measurements.The N-doped carbon cloth exhibits outstanding electrochemical activity and reversibility toward V(IV)/V(V) redox couple.The rate constant of V(IV)/V(V) redox reaction on carbon cloth can increase to 2.27 × 10-4cm/s from 1.47 × 10-4cm/s after nitrogen doping.The cell using N-doped carbon cloth as positive electrode has larger discharge capacity and higher energy efficiency compared with the cell using pristine carbon cloth.The average energy efficiency of the cell using N-doped carbon cloth for 50 cycles at 30 m A/cm2 is 87.8%,4.3% larger than that of the cell using pristine carbon cloth.It indicates that the N-doped carbon cloth has a promise application prospect in vanadium redox flow batteries.  相似文献   

5.
Recent progress in studies of several types of core-shell structured electrode materials, including TiO2/C, Si/C, Si/SiO x , LiCoO2/C, and LiFePO4/C nanocomposites, including details of their preparation and their electrochemical performance is briefly reviewed. Results clearly show that the coating shell can effectively prevent the aggregation of the nanosized cores, which are the electrochemically active materials. In addition, the diffusion coefficients of lithium ions can be increased, and the reversibility of lithium intercalation and deintercalation is improved. As a result, the cycling behavior is greatly improved. The reviewed results suggest that core-shell nanocomposites are a good starting point for further development of new promising electrode materials.
Y. P. WuEmail:
R. Holze (Corresponding author)Email:
  相似文献   

6.
The essential structural features of lithium-metal phosphates (LMP) have been studied using FTIR spectroscopy which is a sensitive tool to probe the local environment in the solid materials. Various LMP materials where M is iron have been investigated including phospho-olivine LiFePO(4), diphosphate LiFeP(2)O(7), Nasicon-type phosphate Li(3)Fe(2)(PO(4))(3) and dihydrate FePO(4).2H(2)O. Vitreous and amorphous materials are also considered. Analysis of internal and external modes of vibration allows to distinguish between the different phases and the type of cationic environment in the framework. Results corroborate the contribution of the main factors which are responsible for the complexity of the spectra, i.e. departure from ideal symmetry, interactions between polyhedra, bridging atoms and lattice distortion.  相似文献   

7.
Glucose-derived activated carbon (GAC)/reduced graphene oxide (RGO) composites are prepared by pre-carbonization of the precursors (aqueous mixture of glucose and graphene oxide) and KOH activation of the pyrolysis products. The effect of the mass ratio of graphene oxide (GO) in the precursor on the electrochemical performance of GAC/RGO composites as electrode materials for electrochemical capacitors is investigated. It is found that the thermally reduced graphene oxide sheets serves as a wrinkled carrier to support the activated carbon particles after activation. The pore size distribution and surface area are depended on the mass ratio of GO. Besides, the rate capability of GAC is improved by the introduction of GO in the precursor. The highest specific capacitance of 334 F g?1 is achieved for the GAC/RGO composite prepared from the precursor with a GO mass ratio of 3 %.  相似文献   

8.
The synthetic routes of porous carbons and the applications of the functional porous carbon-based composite electrode materials for lithium secondary batteries are reviewed. The synthetic methods have made great breakthroughs to control the pore size and volume, wall thickness, surface area, and connectivity of porous carbons, which result in the development of functional porous carbon-based composite electrode materials. The effects of porous carbons on the electrochemical properties are further discussed. The porous carbons as ideal matrixes to incorporate active materials make a great improvement on the electrochemical properties because of high surface area and pore volume, excellent electronic conductivity, and strong adsorption capacity. Large numbers of the composite electrode materials have been used for the devices of electrochemical energy conversion and storage, such as lithium-ion batteries (LIBs), Li-S batteries, and Li-O2 batteries. It is believed that functional porous carbon-based composite electrode materials will continuously contribute to the field of lithium secondary batteries.  相似文献   

9.
The shuttle effect seriously impedes the development and practical application of lithium sulfur(Li-S)batteries.It is still a long-term challenge to find effective anchoring materials to hinder the shuttle effect of Li-S batteries.Using carbon allotrope as anchoring materials is an effective strategy to alleviate the shuttling effect.However,the influence factors of carbon allotrope on the adsorption performance of LIPSS at the atomic level are not clear,which limits the application of carbon allotrope in Li-S batteries.Herein,using first-principles simulations,a systematical calculation of carbon allotropes with various ring size(6 ≤S≤16) and shape is conducted to understand the adsorption mechanism.The results show that the T-G monolayers with suitable ring structure and high charge transfer can significantly enhance the interaction between the monolayer and LiPSs,allowing them to have high capacity and high coulombic efficiency.Further diffusion studies show that LiPSs on the T-G monolayer have the low diffusion barriers,which ensures the charging and discharging rate of batteries.Our studies could provide material design principles of carbon allotrope monolayers used as anchoring materials of the high performance Li-S batteries.  相似文献   

10.
Guo P  Song H  Chen X  Ma L  Wang G  Wang F 《Analytica chimica acta》2011,(2):17818-155
The structure and electronic properties of graphene nanosheet (GNS) render it a promising conducting agent in a lithium-ion battery. A graphite electrode loaded with GNS exhibits superior electrochemical properties including higher rate performance, increased specific capacity and better cycle performance compared with that obtained by adding the traditional conducting agent–acetylene black. The high-quality sp2 carbon lattice, quasi-two-dimensional crystal structure and high aspect ratio of GNS provide the basis for a continuous conducting network to counter the decrease in electrode conductivity with increasing number of cycles, and guarantee efficient and fast electronic transport throughout the anode. Effects of GNS loading content on the electrochemical properties of graphite electrode are investigated and results indicate that the amount of conductive additives needed is decreased by using GNS. The kinetics and mechanism of lithium-storage for a GNS-loaded electrode are explored using a series of electrochemical testing techniques.  相似文献   

11.
The creation of new electrode materials and the modification of existing ones are important trends in the development of lithium-ion batteries. Of special significance is to evaluate their diffusivity, i.e., the ability of providing transfer of the electroactive component. Such electrochemical techniques as cyclic voltammetry, electrochemical impedance spectroscopy, potentiostatic intermittent titration technique, and galvanostatic intermittent titration technique are used for this purpose. The values of chemical diffusion coefficient D estimated in similar electrode materials are shown to scatter by several orders of magnitude. Principal causes of this rather considerable scattering are discussed, including the uncertainty of diffusion area estimations and the use of various approaches to deriving equations to calculate D. Our conclusions are illustrated by examples of D estimations in the electrode materials Li x C6, Li x Sn, Li x TiO2, Li x WO3, LiM y Mn2?y O4, and LiFePO4.  相似文献   

12.

Phosphorus-doped soft carbon was synthesized by a facile phosphoric acid-assisted route. It is found that the phosphorus-doped soft carbon used as lithium ion battery anode exhibits a high reversible capacity of 333.6 mA h g–1 with the first cycle coulombic efficiency of 87.0% at the current density of 30 mA g–1. When used as sodium ion battery anode, it also shows great storage performance, with a reversible capacity of 121.3 mA h g–1 with an initial coulombic efficiency of 65.0% at the current density of 10 mA g–1. Besides, good rate capability and stable cycling performance are also observed for both lithium and sodium ion batteries, indicating potential of their application in large-scale storage devices.

  相似文献   

13.
Carbon nanosprings (CNSs) with spring diameter of ~140 nm, carbon ring diameter of ~100 nm and pitch distance of ~150 nm, synthesized by using a catalytic chemical vapor deposition technology, have been investigated for potential applicability in lithium batteries as anode materials. The electrochemical results demonstrate that the present CNSs are superior anode materials for rechargeable lithium-ion batteries with high-rate capabilities, as well as long-term cycling life. At a current density as high as 3 A g?1, CNSs can still deliver a reversible capacity of 160 mA h g?1, which is about six times larger than that of graphite and three times larger than that of multi-wall carbon nanotubes under the same current density. After hundreds of cycles, there is no significant capacity loss for CNSs at both low and high current densities. The much improved electrochemical performances could be attributed to the nanometer-sized building blocks as well as the unusual spring-like morphology.  相似文献   

14.
以洋葱碳为还原剂,KMnO4为氧化剂,稀硫酸溶液为溶剂,采用水热法一步制备MnO2纳米棒.利用X射线衍射仪和透射电子显微镜分析了MnO2纳米棒的物相、结构、形貌;将MnO2纳米棒作为电极材料组装了超级电容器,采用电池测试系统测定了超级电容器的电化学性能.结果表明,所得到的产物为α-MnO2,其直径为5~10nm,长度为50~100nm;以MnO2纳米棒作为电极材料组装的超级电容器具有较高的比容量和稳定性,有望在超级电容器的研究和应用中得到推广.  相似文献   

15.
The performance of mesoporous carbon capsules as electrode materials in electrochemical double layer capacitors (EDLCs) was evaluated in the presence of a variety of electrolytes, including room temperature ionic liquids (ILs).  相似文献   

16.
17.
The delithiation process in monoclinic Li3V2(PO4)3 has been determined by powder neutron diffraction coupled with 7Li solid-state NMR techniques. Charge ordering of vanadium (V3+/V4+) was observed in Li2V2(PO4)3 as shown by the gray and blue V-O octahedra, respectively, indicating that the electrons are pinned in this phase and hence transport is limited.  相似文献   

18.
Although noble metals are still widely used in electroanalysis, a plethora of different nonconventional metals is now enriching the panorama of materials acting as the electrochemical transducer in sensing systems. In particular, Ti, Cu, Co, Fe, Mo, Ta, W, Rh, Bi, Sb, Te and Pb are discussed here in view of their peculiar physicochemical properties and of the interesting electrocatalytic activities ascribable to these elements and to the relevant metal oxide ultrathin films that spontaneously form at the electrode–solution interface. This behaviour, exploitable in electroanalysis for the detection of a number on analytes, is often accompanied by low price and high resistance to corrosion and to abrasion characterising these materials. These peculiarities encourage the possible use of the cited metals in a wide number of analytical frames, ranging from process control to bioimplantable sensing systems.  相似文献   

19.
The structure and characteristic of carbon materials have a direct influence on the electrochemical performance of sulfur-carbon composite electrode materials for lithium-sulfur battery.In this paper,sulfur composite has been synthesized by heating a mixture of elemental sulfur and activated carbon,which is characterized as high specific surface area and microporous structure.The composite,contained 70%sulfur,as cathode in a lithium cell based on organic liquid electrolyte was tested at room temperature....  相似文献   

20.
Hierarchical SnO2 with double carbon coating (polypyrrole-derived carbon and reduced graphene oxide in order) composites have been successfully synthesized as anode materials for lithium ion batteries. The composites were characterized and examined by X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, cyclic voltammetry, and galvanostatic discharge/charge tests. Such a novel nanostructure can not only provide a high conductivity but also prevent aggregation of SnO2 nanoparticles, leading to the improvement of the cycling performance. Comparing with pure hierarchical SnO2 and polypyrrole-derived carbon-coated hierarchical SnO2, hierarchical SnO2 with double carbon coating composite exhibits higher lithium storage capacities and better cycling performance, 554.8 mAh g?1 after 50 cycles at a current density of 250 mA g?1. In addition, the rate performance of hierarchical SnO2 with double carbon coating composite is also very well. For all the improved performances, this double carbon coating architecture may provide some references for other electrode materials of lithium ion batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号