首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Despite widespread evidence of the influence of dissolved air on hydrophobic interaction, the mechanisms of observed effects are still unknown. Although some experiments indicate that adsorbed gases can modify the structure of water next to hydrophobic surfaces, gas effects on measured forces have been observed only at large surface separations. Gas-specific depletion of water at a hydrophobic surface has been detected but was not reproduced in subsequent measurements. We use computer simulations to study short-ranged hydrophobic attraction in the absence and presence of dissolved gas and monitor gas adsorption at molecular resolution inaccessible in experiments. Although we observe a significant accumulation of dissolved gases at hydrophobic surfaces, even in supersaturated gas solutions surface concentrations remain too low to induce any significant change in the local structure of water and short-range surface forces. We present direct calculations of the hydrophobic force between model hydrocarbon plates at separations between 1.5 and 4 nm. Although stronger, the calculated solvation force has a similar decay rate as deduced from recent surface force apparatus measurements at a somewhat lower contact angle. Within the statistical uncertainty, short-range attraction is not affected by the presence of dissolved nitrogen, even in supersaturated solution with a gas fugacity as high as 30 atm. Comparisons of the adsorption behavior of N2, O2, CO2, and Ar reveal similar features in contrast to the peculiar suppression of water depletion reported for an Ar solution in a neutron reflectivity experiment. Our calculations reveal a notable difference between pathways to the capillary evaporation of pure water and gas-phase nucleation in confined supersaturated gas solutions.  相似文献   

2.
Reports of endocrine disrupting compounds (EDCs) and pharmaceuticals and personal care products (PPCPs) have raised substantial concern among important potable drinking water and reclaimed wastewater quality issues. Our study investigates the removal of EDC/PPCPs of 52 compounds having different physico-chemical properties (e.g., size, hydrophobicity, and polarity) by nanofiltration (NF) and ultrafiltration (UF) membranes using a dead-end stirred-cell filtration system. EDC/PPCPs were applied to the membrane in one model water and three natural waters. Experiments were performed at environmentally relevant initial EDC/PPCP concentrations ranging typically from 2 to <250 ng/L. EDC/PPCP retention was quantified by liquid and gas chromatography with mass spectroscopy–mass spectroscopy. A general separation trend due to hydrophobic adsorption as a function of octanol–water partition coefficient was observed between the hydrophobic compounds and porous hydrophobic membrane during the membrane filtration in unequilibrium conditions. The results showed that the NF membrane retained many EDC/PPCPs due to both hydrophobic adsorption and size exclusion, while the UF membrane retained typically hydrophobic EDC/PPCPs due mainly to hydrophobic adsorption. However, the transport phenomenon associated with adsorption may depend on water chemistry conditions and membrane material.  相似文献   

3.
电厂废气中饱和水蒸气对活性炭变压吸附捕集CO2的影响   总被引:1,自引:0,他引:1  
由于热电厂废气中含有高湿饱和水蒸气,选用疏水材料活性炭为吸附剂,利用真空变压吸附技术研究了活性炭分离电厂废气中水蒸气和二氧化碳的可行性和优越性,研究了水对CO2捕集的影响。实验分析表明,水在活性炭上的“S”型等温吸附曲线有利于真空条件下被解吸。同时,圆锥模型描述了水蒸气在吸附床内的浓度分布。结果表明,即使水蒸气可以被活性炭吸附,但它的存在不影响CO2的捕集。每个循环操作可在相对较短的解吸时间和较高的解吸压力下完成。实验中单床三步变压吸附工艺可以使CO2回收率高达80%,CO2纯度达43%。  相似文献   

4.
The long‐range attractive force or “snap‐in” is an important phenomenon usually occurring when a solid particle interacts with a water/gas interface. By using PeakForce quantitative nanomechanics the origin of snap‐in in the force curve between the atomic force microscopy (AFM) probe and the water/gas interface of nanobubbles has been investigated. The snap‐in frequently happened when the probe was preserved for a certain time or after being used for imaging solid surfaces under atmospheric conditions. In contrast, imaging in liquids rarely induced a snap‐in. After a series of control experiments, it was found that the snap‐in can be attributed to hydrophobic interactions between the water/gas interface and the AFM probe, which was either modified or contaminated with hydrophobic material. The hydrophobic contamination could be efficiently removed by a conventional plasma‐cleaning treatment, which prevents the occurring of the snap‐in. In addition, the adsorption of sodium dodecyl sulfate onto the nanobubble surface changed the water/gas interface into hydrophilic, which also eliminated the snap‐in phenomenon.  相似文献   

5.
Two types of molecular simulation techniques have been utilized to investigate adsorption of methanol/water mixtures in a mesoporous silica with a hydrophobic pore surface: the NVT-ensemble Molecular Dynamics method with the melt-quench algorithm for modeling a fully-silylated mesoporous silica and the μVT-ensemble Orientaional-Biased Monte Carlo method for calculating adsorption isotherms. Adsorption isotherms of methanol and water at 333 K are calculated for an equi-relative-pressure mixture (each component has the same relative pressure which is defined as the ratio of the partial pressure to the saturation pressure of the pure gas) together with pure gases. In the case of the pure gas, water hardly adsorb even at elevated pressures, while the adsorption isotherm for methanol shows the condensable adsorption. On the other hand, in the case of the mixture, water molecules are substantially adsorbed along with methanol molecules, showing an isotherm representing the condensation mechanism. In addition, it is found that the separation factor of methanol to water is the highest in the case of monolayer adsorption from a liquid mixture.  相似文献   

6.
The purpose of this study was to improve our understanding of the molecular organization of hydrophobic guest molecules in the presence of co-adsorbed water inside SBA-15 ordered mesoporous silica material. Understanding this adsorption competition is essential in the development of applications of controlled adsorption and desorption. The poorly water soluble drug compound itraconazole and the fluorescent probe Nile red were selected for the study. The interaction between itraconazole and SBA-15 was investigated using FT-IR, (1)H MAS NMR and (29)Si MAS NMR spectroscopy, by determination of adsorption isotherms and release kinetics in simulated gastric fluid. The distribution and migration of the hydrophobic fluorescent probe Nile red was visualized in situ using confocal fluorescence microscopy. For both molecules, there was a pronounced influence of the co-adsorbed water on adsorption, hydrophobic aggregation and migration in SBA-15 pores. These insights contribute to the development of practical methods for loading ordered mesoporous silica materials with hydrophobic molecules.  相似文献   

7.
苯基修饰的疏水微孔二氧化硅膜的制备与表征   总被引:2,自引:0,他引:2  
采用苯基三乙氧基硅烷(PTES)和正硅酸乙酯(TEOS)作为前驱体,通过溶胶-凝胶法制备了苯基修饰的SiO2膜材料。利用扫描电镜、N2吸附、视频光学接触角测量仪、热重分析、红外光谱等测试手段对膜的孔结构以及疏水性能进行了表征,最后还研究了修饰后膜材料在室温条件下的单组份气体渗透和分离性能。结果表明,随着PTES加入量的增大,膜材料的疏水性逐渐增强,当PTES/TEOS和H2O/TEOS的化学计量比分别达到0.6和9.6时,膜材料对水的接触角达到115±0.5°,仍保持良好的微孔结构,其孔体积为0.17cm3/g,孔径为0.4-0.5nm。室温下氢气在修饰后SiO2膜的输运既遵循发生在微孔孔道的表面扩散机理也遵循发生在较大孔道或者微缺陷的努森扩散机理,膜材料的H2渗透率达到1.49×10-6mol?m-2?Pa-1?s-1,H2/CO2 和H2/SF6的理想分离系数分别达到4.64和365.59  相似文献   

8.
The propensity of hydroxide and hydronium ions to accumulate at interfaces is the subject of ongoing scientific debate. Electrokinetic and surface force measurements suggest elevated interfacial concentrations of hydroxide ions across a wide range of pHs. Contrary to this, however, surface-sensitive spectroscopic techniques and molecular dynamic (MD) simulations indicate that hydronium ions have strong surface affinity under similar conditions. Here we review results obtained for gas/water, oil/water and solid/water interfaces. Emphasis is placed on ion adsorption phenomena occurring on polymer films of different hydrophobicity and structure. The results clearly show that asymmetric water ion adsorption is independent of the hydrophobicity of the solid surface. Recently obtained data reveal significant effects of the hydroxide and hydronium ions even on the charging of hydrophobic polymers in the presence of multivalent electrolytes and on the charging of zwitterionic lipid membranes.  相似文献   

9.
The surface of silica spheres with a diameter of 500 nm was modified with ethoxysilane. Hydrophilic and partially hydrophobic silica spheres were obtained, suitable for the preparation of two-dimensional monoparticle films at the liquid-air interface. The tendency of these particles to self-assemble is basically dependent on surface hydrophobicity. Liquid sorption excess isotherms were studied in ethanol-cyclohexane and ethanol-chloroform mixtures with the aim of characterizing the adsorption capacity of the particles. Specific surface area and porosity were measured by nitrogen adsorption. The specific surface area determined by liquid sorption was considerably larger than determined by gas adsorption. This is ascribed to penetration of ethanol into the pores and the swelling of the silica particles in ethanol. Surface modification of hydrophilic particles changed the film-forming properties of the particles. The compressibility and the lift-off area of the monolayer films of hydrophobic particles on water were higher than for the films of hydrophilic particles.  相似文献   

10.
The adsorption behaviors of amino acids in short chain peptides were examined. Each amino acid, aliphatic or charged, was inserted between the two tryptophans of a peptide, GWWG. The capacity factors of these peptides on an Ocytl-Sepharose column were measured. The adsorption enthalpies, entropies, and the number of repelled water molecules after adsorption were estimated to analyze the contribution of each different amino acid to its hydrophobic adsorption. The peptides inserted with aliphatic amino acids owned the highest capacity factors but released the least amount of adsorption heat among all the peptides under examination. It was found that the hydrophobic contribution of aliphatic amino acids was derived from the entropy gain by repelling the ordered water surrounding them. The insertion of negatively charged amino acids greatly reduced the capacity factors but still repelled a significant number of water molecules after adsorption. This indicated that the water molecules surrounding ionic amino acids were not orderly aligned. The dehydration cost energy but the water repelling did not offer enough entropy to drive the adsorption. Subsequently, lower retention was obtained from the peptides inserted with negatively charged ionic amino acids. The insertion of lysine increased the adsorption enthalpy but repelled no water molecules after adsorption. It was speculated that the inserted lysine still interacted with hydrophobic ligands but disturbed the interaction between ligands and adjacent tryptophans. Therefore, the adsorption enthalpy increased and the capacity factors decreased. Different amino acids contributed to hydrophobic interaction in different ways. The simultaneous analysis of capacity factor, adsorption enthalpy, adsorption entropy, and the number of repelled water molecules facilitated the understanding of the adsorption processes.  相似文献   

11.
Porous coordination polymers are molecule-based materials presenting a high degree of tunability, which offer many advantages for targeted applications over conventional inorganic materials. This work demonstrates that the hydrophilic/hydrophobic character of Prussian blue analogues having a lipophilic feature may be tuned to optimize the gas adsorption properties. The role of the coordinatively unsaturated metal sites is emphasized through a combination of theoretical and experimental study of water, ethanol, and n-hexane adsorption.  相似文献   

12.
Criterial values of the specific heat of water wetting, surface pressure, and contact angle classifying surfaces into hydrophilic and hydrophobic are proposed based on the analysis of own and published data. The most characteristic properties of hydrophobic surfaces, i.e., large surface area per water molecule in the conventional adsorption monolayer and the absence of continuous two-layer water film on the adsorbent surface at vapor pressure close to saturation, are discussed using nonporous carbon-based materials as example. The presence of residual hydrophilic groups that act as sites of the clusterization of polar molecules on the surface of graphitized carbon black is confirmed by gas chromatography and the concentration of these sites is calculated. The amount of water molecules in the surface cluster is determined at different stages of adsorption. Procedures for preparing organically modified layered silicates and silica as basic objects of the study of the interaction between water molecules and hydrophobic surfaces are considered. It is proven that the boundary water layer in the vicinity of hydrophobic surface consists of a thin (∼0.5 nm) depletion layer with a density of 0.4 g/cm3 and a considerable amount (25–30%) of water molecules with free OH groups and thicker (∼35 nm) layer, which is characterized by a more ordered network of hydrogen bonds compared to liquid water. Data obtained by X-ray scattering and neutron and reflection methods, and sum-frequency vibrational spectroscopy are compared with the results of calorimetric study of the interaction between water and hydrophobic surface, as well as with the data of molecular-statistical calculations of the state of water molecules in the surface layer.  相似文献   

13.
The interaction of water with laboratory soots possessing a range of properties relevant for atmospheric studies is examined by two complementary methods: gravimetrical measurement of water uptake coupled with chemical composition and porosity analysis and HTDMA (humidified tandem differential mobility analyzer) inference of water uptake accompanied by separate TEM (transmission electron microscopy) analysis of single particles. The first method clarifies the mechanism of water uptake for bulk soot and allows the classification of soot with respect to its hygroscopicity. The second method highlights the dependence of the soot aerosol growth factor on relative humidity (RH) for quasi-monodisperse particles. Hydrophobic and hydrophilic soot are qualitatively defined by their water uptake and surface polarity: laboratory soot particles are thus classified from very hydrophobic to very hydrophilic. Thermal soot particles produced from natural gas combustion are classified as hydrophobic with a surface of low polarity since water is found to cover only half of the surface. Graphitized thermal soot particles are proposed for comparison as extremely hydrophobic and of very low surface polarity. Soot particles produced from laboratory flame of TC1 aviation kerosene are less hydrophobic, with their entire surface being available for statistical monolayer water coverage at RH approximately 10%. Porosity measurements suggest that, initially, much of this surface water resides within micropores. Consequently, the growth factor increase of these particles to 1.07 at RH > 80% is attributed to irreversible swelling that accompanies water uptake. Hysteresis of adsorption/desorption cycles strongly supports this conclusion. In contrast, aircraft engine soot, produced from burning TC1 kerosene in a gas turbine engine combustor, has an extremely hydrophilic surface of high polarity. Due to the presence of water soluble organic and inorganic material it can be covered by many water layers even below water saturation conditions. This soot demonstrates a gradual diameter growth factor (D(wet)/D(dry)) increase up to 1.22 at 93% relative humidity, most likely due to the presence of single particles with water soluble material heterogeneously distributed over their surface.  相似文献   

14.
Measured forces between apolar surfaces in water have often been found to be sensitive to exposure to atmospheric gases despite low gas solubilities in bulk water. This raises questions as to how significant gas adsorption is in hydrophobic confinement, whether it is conducive to water depletion at such surfaces, and ultimately if it can facilitate the liquid-to-gas phase transition in the confinement. Open Ensemble molecular simulations have been used here to determine saturated concentrations of atmospheric gases in water-filled apolar confinements as a function of pore width at varied gas fugacities. For paraffin-like confinements of widths barely exceeding the mechanical instability threshold (spinodal) of the liquid-to-vapor transition of confined water (aqueous film thickness between three and four molecular diameters), mean gas concentrations in the pore were found to exceed the bulk values by a factor of approximately 30 or approximately 15 in cases of N2 and CO2, respectively. At ambient conditions, this does not result in visible changes in the water density profile next to the surfaces. Whereas the barrier to capillary evaporation has been found to decrease in the presence of dissolved gas (Leung, K.; Luzar, A.; and Bratko, D. Phys. Rev. Lett. 2003, 90, 065502), gas concentrations much higher than those observed at normal atmospheric conditions would be needed to produce noticeable changes in the kinetics of capillary evaporation. In simulations, dissolved gas concentrations corresponding to fugacities above approximately 40 bar for N2, or approximately 2 bar for CO2, were required to trigger expulsion of water from a hydrocarbon slit as narrow as 1.4 nm. For nanosized pore widths corresponding to the mechanical instability threshold or above, no significant coupling between adsorption layers at opposing confinement walls was observed. This finding explains the approximately linear increase in gas solubility with inverse confinement width and the apparent validity of Henry's law in the pores over a broad fugacity range.  相似文献   

15.
The hydrophobic effect is the common expression for processes where nonpolar groups in molecules are spontaneously removed from water. Thermodynamic analysis of hydrocarbon solubility in water, micellization and adsorption of surfactants show that the hydrophobic effect can be understood in terms of two contributions. The first contribution is attributed to the structuring, or rearrangement, of water molecules in the vicinity of a hydrophobe. This contribution is favorable, and hence increases the solubility of hydrocarbons in water, increases the cmc, and decreases the adsorption of surfactants. The second contribution is attributed to the formation of a cavity in the water in order to accomodate the hydrophobe. This contribution dominates over the first one and is unfavorable, i.e. it decreases the solubility of hydrocarbons in water, decreases the cmc, and increases the adsorption of surfactants. Thus, the cause of the hydrophobic effect is to be found in the large energy required to form a cavity in the water. On the other hand the temperature dependence of the hydrophobic effect is entirely determined by the water structuring, or rearrangement, in the vicinity of a hydrophobe.  相似文献   

16.
表面活性剂可以与污泥表面的胞外聚合物(EPS)吸附形成胶束,释放出自由水和结合水,从而达到改善污泥脱水性能的目的.本文采用粗粒化的分子动力学模拟方法,研究了Gemini表面活性剂与EPS形成复合物的过程和结构.聚电解质链的亲疏水性对吸附过程有显著影响,亲水聚电解质链与Gemini表面活性剂吸附的主要驱动力为静电吸引,Gemini表面活性剂头基吸附在链上,尾链朝向溶剂;疏水聚电解质链与Gemini表面活性剂吸附过程由静电作用与疏水作用共同促进,Gemini表面活性剂以平行于聚电解质链的构型存在.Gemini表面活性剂联结基团长度对吸附过程的影响甚微;聚电解质链的电荷密度对亲水聚电解质链的吸附产生协同作用,对疏水聚电解质链的吸附不产生作用.  相似文献   

17.
采用分步悬浮聚合法制备了聚二乙烯基苯/聚丙烯酸甲酯(PDVB/PMA)大孔互穿聚合物网络,将其中的聚丙烯酸甲酯用乙二胺氨解,合成了具有疏水/亲水性能的聚二乙烯基苯/聚(N-2-氨基乙基丙烯酰胺)(PDVB/PNAEAM)大孔互穿聚合物网络(IPN);测定了该树脂的孔结构、含水量、弱碱交换量和溶胀性能;测定了该树脂对水杨酸在不同温度下的吸附等温线,利用热力学函数关系计算出了吸附焓、自由能和熵.推测PDVB/PNAEAM IPN树脂中疏水性的PDVB一网具有疏水作用吸附能力、亲水性的PNAEAM一网具有氢键作用吸附能力.动态吸附及脱附实验表明湿态PDVB/PNAEAM IPN树脂对水溶液中水杨酸的饱和吸附量达到46.1mg/mL.树脂可以通过4%NaOH溶液再生.PDVB/PNAEAM IPN树脂在分离工业废水中水杨酸等芳香有机酸有良好的应用前景.  相似文献   

18.
Calixarenes grafted on silica are energetically uniform hosts that bind aromatic guests with 1:1 stoichiometry, as shown by binding energies that depend upon the calixarene upper rim composition but not on their grafted surface density (0.02-0.23 nm(-2)). These materials are unique in maintaining a hydrophilic silica surface, as probed by H2O physisorption measurements, while possessing a high density of hydrophobic binding sites that are orthogonal to the silica surface below them. The covalently enforced cone-shaped cavities and complete accessibility of these rigidly grafted calixarenes allow the first unambiguous measurements of the thermodynamics of guest interaction with the same calixarene cavities in aqueous solution and vapor phase. Similar to adsorption into nonpolar protein cavities, adsorption into these hydrophobic cavities from aqueous solution is enthalpy-driven, which is in contrast to entropy-driven adsorption into water-soluble hydrophobic hosts such as beta cyclodextrin. The adsorption thermodynamics of several substituted aromatics from vapor and liquid are compared by (i) describing guest chemical potentials relative to pure guest, which removes differences among guests because of aqueous solvation and van der Waals contacts in the pure condensed phase, and (ii) passivating residual guest binding sites on exposed silica, titrated by water during adsorption from aqueous solution, using inorganic salts before vapor adsorption. Adsorption isotherms depend only upon the saturation vapor pressure of each guest, indicating that guest binding from aqueous or vapor media is controlled by van der Waals contacts with hydrophobic calixarene cavities acting as covalently assembled condensation nuclei, without apparent contributions from CH-pi or other directional interactions. These data also provide the first direct quantification of free energies for interactions of water with the calixarene cavity interior. The calixarene-water interface is stabilized by approximately 20 kJ/mol relative to the water-vapor interface, indicating that water significantly competes with the aromatic guests for adsorption at these ostensibly hydrophobic cavities. This result is useful for understanding models of water interactions with other concave hydrophobic surfaces, including those commonly observed within proteins.  相似文献   

19.
邓琳  祁志美 《物理化学学报》2010,26(7):1923-1928
利用六甲基二硅烷胺对平面玻璃光波导(高折射率透明导光薄膜介质)进行硅烷化处理, 得到水接触角大于90°的疏水表面. 然后使用时间分辨光波导分光光谱技术研究水溶液中的罗丹明6G (R6G)和亚甲基蓝(MB)分子在疏水玻璃表面的吸附行为, 并与亲水玻璃条件下测得的结果进行对比. 对利用疏水玻璃光波导测得的R6G的吸附-脱附动力学曲线进行Langmuir拟合得到了R6G的吸附速率常数, 脱附速率常数以及吸附自由能. 并且发现与亲水玻璃情况相比, 吸附速率常数增大, 脱附速率常数减小, 吸附自由能更负. 在疏水玻璃表面形成的R6G和MB吸附层的吸光度与亲水玻璃情况相比显著升高, 表明这两种分子更倾向于吸附在疏水玻璃表面. 实验结果还发现玻璃硅烷化处理能够有效抑制这两种染料分子在表面的聚合反应.  相似文献   

20.
为探讨聚合物-水界面十八烷基聚氧乙烯链(SPEO)空间结构和白蛋白选择性吸附行为的内在联系,本文采用聚甲基丙烯酸甲酯接枝十八烷基聚氧乙烯(PMMA-g-SPEO),通过不同热处理方式获得了具有“环形链”(A)和“尾形链”(B)结构的两种模型表面.在A表面,水相接触角随水化时间的延长而迅速降低,最终亲水性的界面可同时有效阻抗白蛋白和纤维蛋白原的吸附,但不呈现对白蛋白的选择性吸附;而在B表面,水相接触角随水化时间的延长变化不大,最终疏水性的界面可在有效阻抗纤维蛋白原的吸附同时,有效诱导白蛋白的选择性吸附,具有聚氧乙烯(PEO)阻抗非特异性吸附和十八烷基选择性吸附协同作用的特点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号