首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
Vesicles prepared by DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) and SOPC (1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine) lipid molecules having sizes smaller than the diffraction-limited focused laser beam have been used to confine single molecules in the laser focus. The confinement of single molecules in a volume smaller than the focused laser beam leads to a Gaussian distribution of single molecule fluorescence intensity. The interactions of single Nile Red molecules with DMPC and SOPC lipid bilayers were studied by single molecule fluorescence confocal microscopy. Nile Red molecules were observed to associate with and dissociate from individual DMPC and SOPC vesicles adsorbed on a glass surface, generating on-and-off fluctuations in a fluorescence signal representing a very low noise two-state trajectory. Off-time statistics were used to investigate the mean radius of the vesicles and the size distribution functions. The means of the on-time distributions of Nile Red in DMPC and SOPC vesicles were significantly different. The association and dissociation reactions of single Nile Red molecules with a vesicle have been studied. Features of the bimolecular interaction between the probe Nile Red and the vesicle were evaluated from the uncorrelated mean on-time and vesicle radius distributions, and the linear Nile Red concentration dependence of the mean off-time. Nile Red is shown to be a useful probe of the structural fluctuations and heterogeneity of these membrane structures, and it is a useful model with which to directly study a diffusion-influenced reversible bimolecular reaction.  相似文献   

2.
The mechanisms of interactions between gramicidin A (gA) and dimyristoylphosphatidylcholine (DMPC) in monolayers formed at the air-water interface were studied by analyzing their mechanical, thermodynamical, and electrical properties evaluated from measurements of pressure-area isotherms and of Maxwell displacement currents (MDC). A contactless method of recording MDC enabled us to monitor changes in the charge state of the monolayer-constituting molecules and to find the relation between a phase state of the monolayer and structural transitions of gA. The peptide-lipid interactions were quantified in terms of the excess of Gibbs free energy, excess entropy, as well as the molecular dipole moments at various gA/DMPC molar ratios, at various temperatures (in the gel phase and also in the liquid-crystalline phase of DMPC molecule), and at various surface pressures. It was found that the strongest interactions between gA and DMPC took place at the gA/DMPC molar ratio at around 0.25. At this monolayer composition, the phospholipids, via their carbonyl moieties, dominantly interact with the single helical gA, which mostly stands upright on the surface and is anchored by its C-terminus to the water surface, and prevent the formation of the intertwined helical gA dimers. The optimum ratio was confirmed also by anomalous electrical behavior of electrical dipole moments derived from MDC measurements.  相似文献   

3.
Ultrathin titanium layers when deposited on the surface of gold can be successfully applied for infrared reflection absorption spectroscopy (IRRAS) investigations. It was shown that the reflectivity, the phase shift, and the mean square electric field of the p- and s-polarized IR radiation in up to 20 nm thick titanium layers covered with a 3-4 nm thick layer of native oxide are comparable to those of the air/gold interface. The surface selection rule is fulfilled. Thus, qualitative and quantitative analysis of 1,2-dimyristoyl- sn-glycero-3-phosphocholine (DMPC) bilayers transferred in liquid expanded (LE) and liquid condensed (LC) states can be performed. Differences are found in the hydration state and molecular arrangement of the two investigated bilayers. In the DMPC bilayer in the LE state, the C-N bond in the positively charged choline moiety is inclined by approximately 70 degrees toward the surface of the negatively charged titanium substrate. In the phosphate moiety, the in-plane vector of the O-P-O group makes a small angle of approximately 15 degrees to the surface normal. This open structure of the lipid molecule corresponds to the B crystal structure of the DMPC molecule and provides space for strong hydration of the polar headgroup. In the DMPC bilayer in the LC state, the intermolecular distances are reduced; the C-N bond of the choline group makes a smaller angle to the surface normal, and the in-plane vector of the O-P-O group in the phosphate moiety displays a larger tilt. The degree of hydration is reduced. The arrangement of the polar headgroup region corresponds to the A crystal structure of the DMPC molecule.  相似文献   

4.
3-Hydroxyflavone (3HF), a molecule that exhibits excited-state intramolecular proton transfer, has been studied for its fluorescence characteristics in dimyristoylphosphatidylcholine (DMPC) liposome membrane. 3HF partitions to the lipid bilayer membrane with a reasonably large partition coefficient. On excitation at 417 nm, a weak emission from the ground-state anion species was observed at 483 nm, whereas excitation at absorption maxima (345 nm) gives the usual intense fluorescence of the phototautomeric emission at 530 nm. In this article, we report the observation of a ground-state proton transfer reaction of 3HF in DMPC liposome membrane.  相似文献   

5.
We applied methods of measurement Maxwell displacement current (MDC) pressure-area isotherms and dipole potential for analysis of the properties of gramicidin A (gA) and mixed gA/DMPC monolayers at an air-water interface. The MDC method allowed us to observe the kinetics of formation of secondary structure of gA in monolayers at an air-water interface. We showed, that secondary structure starts to form at rather low area per molecule at which gA monolayers are in gaseous state. Changes of the MDC during compression can be attributed to the reorientation of dipole moments in a gA double helix at area 7 nm(2)/molecule, followed by the formation of intertwined double helix of gA. The properties of gA in mixed monolayers depend on the molar fraction of gA/DMPC. At higher molar fractions of gA (around 0.5) the shape of the changes of dipole moment of mixed monolayer was similar to that for pure gA. The analysis of excess free energy in a gel (18( ) degrees C) and in a liquid-crystalline phase (28( ) degrees C) allowed us to show influence of the monolayer structural state on the interaction between gA and the phospholipids. In a gel state and at the gA/DMPC molar ratio below 0.17 the aggregates of gA were formed, while above this molar ratio gA interacts favorably with DMPC. In contrast, for DMPC in a liquid-crystalline state aggregation of gA was observed for all molar fractions studied. The effect of formation ordered structures between gA and DMPC is more pronounced at low temperatures.  相似文献   

6.
Lipoamino acids (LAA) are useful promoieties to modify physicochemical properties of drugs, namely lipophilicity and amphiphilicity. The resulting membrane-like character of drug-LAA conjugates can increase the absorption profile of drugs through cell membranes and biological barriers. To show the role of amphiphilicity with respect to lipophilicity in the interaction of drugs with biomembranes, in the present study we evaluated the mode of such an interaction of lipophilic conjugates of LAA with the antioxidant drug idebenone (IDE). DSC analysis and transfer kinetic studies were carried out using dimyristoylphosphatidylcholine (DMPC) multilamellar liposomes (MLVs) as a model. For comparison, two esters of IDE with alkanoic acids were synthesized and included in the analysis. The experimental results indicate that based on their different structure, IDE-LAA conjugates interacted at different levels with respect to pure IDE with DMPC bilayers. In particular, a progressive penetration inside the vesicles was observed upon incubation of IDE-LAA compounds with empty liposomes. The enhanced amphiphilicity of the drug due to the LAA moieties caused more complex interactions with DMPC bilayers, compared to those registered with the native drug or IDE alkanoate esters.  相似文献   

7.
The binding of labeled antibodies to hapten substituted monolayers at the air/water interface has been studied by means of fluorescence microscopy. Haptens with various spacer lengths between the epitope and a hydrocarbon chain, anchoring the molecule to the interface, have been synthesized. With DMPC,a unspecific binding has been shown to predominate over specific binding due to electrostatic interactions. At high surface pressures the bound antibody is detached because of steric interference with the lipid head groups. Due to a reduction of electrostatic interactions, no unspecific binding is observed to monolayers of cholesterol, which carries a small dipole moment. Mixed monolayers of cholesterol and DMPC separate into two fluid phases, with preferential antibody binding to the cholesterol-enriched phase.  相似文献   

8.
We report on the gel-to-fluid phase transition behavior of unilamellar vesicles formed with 1,2-dimyristoyl-sn-phosphatidylcholine (14:0 DMPC). We have interrogated the gel-to-fluid transition temperature of these bilayer structures using the chromophore perylene incorporated in their nonpolar region. We observe a discontinuous change in the reorientation time of perylene sequestered within the bilayer at the known melting transition temperature of 14:0 DMPC, 24 degrees C. The perylene reorientation data reveal a local viscosity of 14.5 +/- 2.5 cP in the gel phase, and 8.5 +/- 1.5 cP in the fluid phase. We have also incorporated small amounts of 1,2-dimyristoleoyl-sn-glycero-3-phosphocholine (14:1 DMPC) into these unilamellar vesicles and find that the melting transition temperature for these bilayers varies in a regular manner with the amount of 14:1 DMPC present. These data demonstrate that very little "contaminant" is required to cause a substantial change in the gel-to-fluid transition temperature, even though these contaminants do not alter the viscosity of the bilayer sensed by perylene, either above or below the melting transition.  相似文献   

9.
Differential capacity, charge density measurements, and polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) were employed to study the fusion of small unilamellar vesicles of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) on a Au(111) electrode surface. The differential capacity and charge density data showed that the vesicles fuse onto the gold surface at charge densities between -10 microC/cm(2) < sigma(M) < 10 microC/cm(2) to form a bilayer. When sigma(M) < -10 microC/cm(2), the film is detached from the surface but it remains in close proximity to the surface. PM-IRRAS experiments provided IR spectra for the bilayer in the adsorbed and the desorbed state. Ab initio normal coordinate calculations were performed to assist interpretation of the IR spectra. The IR bands were analyzed quantitatively, and this analysis provided information concerning the conformation and orientation of the acyl chains and the polar head region of the DMPC molecule. The orientation of the chains, hydration, and conformation of the headgroup of the DMPC molecule strongly depend on the electrode potential.  相似文献   

10.
A series of artificial cyclic lipids that mimic archaeal membrane ones has been synthesized. The structural features of these molecules include a longer cyclic framework, in which the alkyl chain length ranges from 24 to 32 in carbon number, which is longer than our first analogous molecule with 20-carbon long alkyl chains [K. Miyawaki, T. Takagi, M. Shibakami, Synlett 8 (2002) 1326]. Microscopic observation reveals that these molecules have a self-assembling ability: hydration of the lipids yields multilamellar vesicles in aqueous solution and monolayer sheets on solid supports. High-sensitivity differential scanning calorimetry (24- and 28-carbon alkyl chain lipids) indicates that (i) the alkyl chain length affects their phase behavior and (ii) the enthalpies of endothermic peaks accompanied by phase transition were considerably lower than those of their monomeric phospholipid analogs. Fluorescence polarization measurements suggest that the membranes made from the 24-carbon alkyl chain lipid have a higher polarization factor than membranes composed of DMPC and DMPC plus cholesterol. These findings imply that the cyclic lipids containing 24- and 28-carbon alkyl chain construct well-organized monolayer membranes and, in particular, that the molecular order of the 24-carbon alkyl chain lipid is higher than that of bilayer membranes in the liquid-ordered phase.  相似文献   

11.
We demonstrate here that the hydrogen/deuterium solvent exchange (HDX) properties of the transmembrane fragment of the M2 protein of Influenza A (M2-TM) incorporated into lipid vesicles or detergent micelles can be studied with straightforward electrospray (ESI) and nanospray mass spectrometry (MS) configurations provided that key factors, including sample preparation techniques, are optimized. Small unilamellar vesicle preparations were obtained by solubilizing dimyristoyl phosphatidylcholine (DMPC) and the M2-TM peptide in aqueous solution with n-octyl-β-D-glycopyranoside, followed by dialysis to remove the detergent. Electron microscopy experiments revealed that subsequent concentration by centrifugation introduced large multilamellar aggregates that were not compatible with ESI-MS. By contrast, a lyophilization-based concentration procedure, followed by thawing above the liquid crystal transition temperature of the lipid component, maintained the liposome size profile and yielded excellent ion fluxes in both ESI-MS and nano-ESI-MS. Using these methods the global HDX profile of M2-TM in aqueous DMPC vesicles was compared with that in methanol, demonstrating that several amide sites were protected from exchange by the lipid membrane. We also show that hydrophobic peptides can be detected by ESI-MS in the presence of a large molar excess of the detergent Triton X-100. The rate of HDX of M2-TM in Triton X-100 micelles was faster than that in DMPC vesicles but slower than when the peptide had been denatured in methanol. These results indicate that the accessibility of backbone amide sites to the solvent can be profoundly affected by membrane protein structure and dynamics, as well as the properties of model bilayer systems.  相似文献   

12.
This paper reports the research on the effect of two main carotenoid pigments present in the membranes of macula lutea of the vision apparatus of primates, including humans, lutein and zeaxanthin, on the structure of model membranes formed with dimyristoylphosphatidylcholine (DMPC). The effects observed in DMPC are compared to the effects observed in the membranes formed with other phosphatidylcholines (PC): egg yolk PC (EYPC), and dipalmitoyl-PC (DPPC). The analysis has been focused, in particular, on the following aspects of the organization of lipid-carotenoid membranes: aggregation state of pigments, an effect on a thickness of the bilayer and pigment orientation within the membranes. These problems have been addressed with the application of UV-Vis absorption spectroscopy, linear dichroism measurements and the diffractometric technique. (1) Both lutein and zeaxanthin appear in a partially aggregated form in the oriented DMPC multibilayers, even at molar fractions as low as 2 mol.% with respect to lipid. (2) Orientation of the transition dipole of both xanthophylls with respect to the axis normal to the plane of DMPC membrane is different in the case of a monomeric form (34+/-3 degrees in the case of lutein and 26+/-3 degrees in the case of zeaxanthin) but essentially the same in the case of aggregated forms of both pigments (42+/-3 degrees in the case of lutein and 40+/-5 degrees in the case of zeaxanthin). It was found that only lutein has an effect on the increase in the thickness of the DMPC membranes (by about 3 A at 25 degrees C). A similar effect was observed also in the case of DPPC at the same temperatures despite the differences in the physical state of both membrane systems. The differences between the effects of lutein and zeaxanthin observed are interpreted in terms of differences of stereochemical structure of both xanthophylls leading to the different localization in the lipid phase. The results demonstrate significant differences in the behavior of lutein and zeaxanthin in model membranes, which may contribute to their different physiological functions and different efficacy as membrane antioxidants.  相似文献   

13.
The stability and bioavailability of anticancer agents, such as gemcitabine, can be increased by forming prodrugs. Gemcitabine is rapidly deaminated to the inactive metabolite (2('),2(')-difluorodeoxyuridine), thus to improve its stability a series of increasingly lipophilic gemcitabine prodrugs linked through the 4-amino group to valeroyl, lauroyl, and stearoyl acyl chains were synthesized. Studies of monolayer properties are important to improve understanding of biological phenomena involving lipid/gemcitabine or lipid/gemcitabine derivative interactions. The interfacial behavior of monolayers constituted by DMPC plus gemcitabine or lipophilic gemcitabine prodrugs at increasing molar fractions was studied at the air/water interface at temperatures below (10 degrees C) and above (37 degrees C) the lipid phase transition. The effect of the hydrophobic chain length of gemcitabine derivatives on the isotherm of pure DMPC was investigated by surface tension measurement, and the results are reported as molar fractions as a function of mean molecular area per molecule. The results show that the compounds interact with DMPC producing mixed monolayers that are subject to an expansion effect, depending on the prodrug chain length. The results give useful hints of the interaction of these prodrugs with biological membranes and increase knowledge on the incorporation site of such compounds, as a function of their lipophilicity, in a lipid carrier; they may lead to improved liposomal formulation design.  相似文献   

14.
The film tension of bilayer Newton black films (NBF) from aqueous dispersions of dimyristoylphosphatidylcholine (DMPC) has been studied in dynamic conditions. The dynamic film tension values γ have been measured using the capillary method for direct measurement of the film tension. Two different solutions have been used: DMPC vesicle suspension in water obtained through sonication, denoted as ‘DMPC(Son)’ (the DMPC adsorption layers are insoluble monolayers) and DMPC dissolved in ethanol plus water mixed solvent, denoted as ‘DMPC(EthW)’ (the DMPC adsorption layers are soluble). Both solutions contain 0.1 M NaCl. The behavior of the dynamic film tension is different for NBF from the two types of solutions. In the case DMPC(Son) γ strongly depends on the film area, while in the case DMPC(EthW) this dependence is less pronounced but still exists. The dependence of the film tension on the film area in case DMPC(Son) is well described by the Frumkin equation modified for bilayer films. Reasonable values of the parameters of Frumkin equation are determined from its fit to the experimental data.  相似文献   

15.
We investigated the effect of dimyristoyltrimethylammonium propane (DMTAP) charge on area per molecule of mixed DMTAP/dimyristoylphosphatidylcholine (DMPC) bilayers in a simple model. Assuming that trimethylammonium (TAP) charge causes lateral polarization of neighboring PC molecules, we analyzed variation in area per molecule as the mole fraction of TAP increases. The theoretical predictions obtained in the present study are consistent with results of a recent molecular dynamics simulation study (Gurtovenko et al. Biophys. J. 2004, 86, 3461).  相似文献   

16.
The micellization process of a series of dissymmetric cationic gemini surfactants [CmH2m+1(CH3)2N(CH2)6N(CH3)2C6H13]Br2 (designated as m-6-6 with m = 12, 14, and 16) and their interaction with dimyristoylphosphatidylcholine (DMPC) vesicles have been investigated. In the micellization process of these gemini surfactants themselves, critical micelle concentration (cmc), micelle ionization degree, and enthalpies of micellization (DeltaHmic) were determined, from which Gibbs free energies of micellization (DeltaGmic) and entropy of micellization (DeltaSmic) were derived. These properties were found to be influenced significantly by the dissymmetry in the surfactant structures. The phase diagrams for the solubilization of DMPC vesicles by the gemini surfactants were constructed from calorimetric results combining with the results of turbidity and dynamic light scattering. The effective surfactant to lipid ratios in the mixed aggregates at saturation (Resat) and solubilization (Resol) were derived. For the solubilization of DMPC vesicles, symmetric 12-6-12 is more effective than corresponding single-chain surfactant DTAB, whereas the dissymmetric m-6-6 series are more effective than symmetric 12-6-12, and 16-6-6 is the most effective. The chain length mismatch between DMPC and the gemini surfactants may be responsible for the different Re values. The transfer enthalpy per mole of surfactant within the coexistence range may be associated with the total hydrophobicity of the alkyl chains of gemini surfactants. The transfer enthalpies of surfactant from micelles to bilayers are always endothermic due to the dehydration of headgroups and the disordering of lipid acyl chain packing during the vesicle solubilization.  相似文献   

17.
We studied the influence of 5 kDa poly(acrylic acid) (PAA) on the phase state, thermal properties, and lateral diffusion in bilayered systems of dimyristoylphosphatidylcholine (DMPC) using (31)P NMR spectroscopy, differential scanning calorimetry (DSC), (1)H NMR with a pulsed field gradient, and (1)H nuclear Overhauser enhancement spectroscopy (NOESY). The presence of PAA does not change the lamellar structure of the system. (1)H MAS NOESY cross-peaks observed for the interaction between lipid headgroups and polyion protons demonstrated only surface PAA-biomembrane interaction. Small concentrations of PAA (up to ~4 mol %) lead to the appearance of a new lateral phase with a higher main transition temperature, a lower cooperativity, and a lower enthalpy of transition. Higher concentrations lead to the disappearance of measurable thermal effects. The lateral diffusion coefficient of DMPC and the apparent activation energy of diffusion gradually decreased at PAA concentrations up to around 4 mol %. The observed effects were explained by the formation of at least two types of PAA-DMPC lateral complexes as has been described earlier (Fujiwara, M.; Grubbs, R. H.; Baldeschwieler, J. D. J. Colloid Interface Sci., 1997, 185, 210). The first one is characterized by a stoichiometry of around 28 lipids per polymer, which corresponds to the adsorption of the entire PAA molecule onto the membrane. Lipid molecules of the complex are exchanged with the "pure" lipid bilayer, with the lifetime of the complex being less than 0.1 s. The second type of DMPC-PAA complex is characterized by a stoichiometry of 6 to 7 lipids per polymer and contains PAA molecules that are only partially adsorbed onto the membrane. A decrease in the DMPC diffusion coefficient and activation energy for diffusion in the presence of PAA was explained by the formation of a new cooperative unit for diffusion, which contains the PAA molecule and several molecules of lipids.  相似文献   

18.
The influence of selected perfluorinated compounds (PFCs), perfluorooctanoic acid (PFOA) or perfluorooctanesulfonic acid (PFOS), on the structure and organization of lipid membranes was investigated using model membranes-lipid monolayers and bilayers. The simplest model--a lipid monolayer--was studied at the air-water interface using the Langmuir-Blodgett technique with surface pressure and surface potential measurements. Lipid bilayers were characterized by NMR techniques and molecular dynamics simulations. Two phospholipids, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), characterized by different surface properties have been chosen as components of the model membranes. For a DPPC monolayer, a phase transition from the liquid-expanded state to the liquid-condensed state can be observed upon compression at room temperature, while a DMPC monolayer under the same conditions remains in the liquid-expanded state. For each of the two lipids, the presence of both PFOA and PFOS leads to the formation of a more fluidic layer at the air-water interface. Pulsed field gradient NMR measurements of the lateral diffusion coefficient (DL) of DMPC and PFOA in oriented bilayers reveal that, upon addition of PFOA to DMPC bilayers, DL of DMPC decreases for small amounts of PFOA, while larger additions produce an increased DL. The DL values of PFOA were found to be slightly larger than those for DMPC, probably as a consequence of the water solubility of PFOA. Furthermore, 31P and 2H NMR showed that the gel-liquid crystalline phase transition temperature decreased by the addition of PFOA for concentrations of 5 mol % and above, indicating a destabilizing effect of PFOA on the membranes. Deuterium order parameters of deuterated DMPC were found to increase slightly upon increasing the PFOA concentration. The monolayer experiments reveal that PFOS also penetrates slowly into already preformed lipid layers, leading to a change of their properties with time. These experimental observations are in qualitative agreement with the computational results obtained from the molecular dynamics simulations showing a slow migration of PFCs from the surrounding water phase into DPPC and DMPC bilayers.  相似文献   

19.
Horswell SL  Zamlynny V  Li HQ  Merrill AR  Lipkowski J 《Faraday discussions》2002,(121):405-22;discussion 441-62
Chronocoulometry and photon polarisation modulation infrared reflection absorption spectroscopy (PM-IRRAS) have been employed to study the fusion of dimyristoylphosphatidylcholine (DMPC) vesicles onto a Au(111) electrode surface. The results show that fusion of the vesicles is controlled by the electrode potential or charge at the electrode surface (sigmaM). At charge densities of -15 microC cm(-2) < sigmaM < 0 microC cm(-2), DMPC vesicles fuse to form a condensed film. When sigmaM < -15 microC cm(-2), de-wetting of the film from the electrode surface occurs. The film is detached from the electrode surface; however, phospholipid molecules remain in its close proximity in an ad-vesicle state. The state of the film can be conveniently changed by adjustment of the potential applied to the gold electrode. PM-IRRAS experiments demonstrated that the potential-controlled transitions between various DMPC states proceed without conformational changes and changes in the packing of the acyl chains of DMPC molecules. However, a remarkable change in the tilt angle of the acyl chains with respect to the surface normal occurs when ad-vesicles spread to form a film at the gold surface. When the bilayer is formed at the gold surface, the acyl chains of DMPC molecules are significantly tilted. The IR spectra have also demonstrated a pronounced change in the hydration of the polar head region that accompanies the spreading of ad-vesicles into the film. For the film deposited at the electrode surface, the infrared results showed that the temperature-controlled phase transition from the gel state to the liquid crystalline state occurs within the same temperature range as that observed for aqueous solutions of vesicles. The results presented in this work show that PM-FTIR spectroscopy, in combination with electrochemical techniques, is an extremely powerful tool for the study of the structure of model membrane systems at electrode surfaces.  相似文献   

20.
An investigation of liposomes comprised of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) or 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) lipids with cholesterol and zinc phthalocyanine (ZnPC) revealed that several fundamental liposome properties are influenced by composition and by lipid-specific features. DMPC and DSPC liposomes were synthesized, and their compositional changes, encapsulation capacities, morphologies, and release properties were evaluated. In this research, liposome degradation, lysis, and content release were initiated by photolysis, i.e., rupture induced by exposure to light. A controlled release mechanism was created through the introduction of photosensitizers (i.e., ZnPC) embedded within the cholesterol-stabilized liposome membrane. The light wavelength and light exposure time accelerated photodegradation properties of DMPC liposomes compared to DSPC liposomes, which exhibited a slower release rate. Morphological changes in the liposomes were strongly influenced by light wavelength and light exposure time. For both the DMPC and DSPC liposomes, visible light with wavelengths in the red end of the spectrum and broad spectrum ambient lighting (400?C700?nm) were more effective for lysis than UV-A light (365?nm). Heating liposomes to 100?°C decreased the stability of liposomes compared to liposomes kept at room temperatures. In addition, the optimal lipid-to-cholesterol-to-photoactivator ratio that produced the most stable liposomes was determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号