首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To explore the effect of the metal center on catechol oxidase and tyrosinase activities, four complexes, Cu2(μ-Cl)2(hbpg)2 (1), [Cu2(μ-OH2)2(hbpg)2](NO3)2(H2O)2 (2), [Fe2(μ-Cl)2(hbpg)2]Cl2(H2O)2 (3), and [Mn2(μ-Cl)2(hbpg)2](H2O)2 (4) (hbpg?=?N-(2-hydroxybenzyl)-N-(2-picolyl)glycine), were synthesized and characterized with elemental analysis, single-crystal X-ray diffraction, molar conductivity measurements, mass spectrometry, UV-Visible, and FT-IR spectroscopies. The X-ray crystal structural analysis indicates that 1 has a binuclear copper, coordinated with N2O2 ligands. Complementary characterizations suggested that 2, 3, and 4 have similar coordination sphere. Complex 3 exhibits much higher catechol oxidase and tyrosinase-like activity than 1, 2, and 4. The results suggested that with a similar coordination sphere, the redox potential of the metal center is critical for catalytic activity. This work provides valuable information for improving the polyphenol oxidase activity of metal complexes for phenolic degradation.  相似文献   

2.
Summary A novel tridentate macrocyclic ligand was synthesised by the reaction of 2,6-dipicolinic acid hydrazide and 2,3-butanedione. Complexes with CoII, NiII and CuII are five-coordinate trigonal bipyramidal on the basis of analyses, electrical conductance, magnetic, electronic and infrared spectral studies. I.r. studies reveal that the ligand coordinates through the pyridine nitrogen and the amido-nitrogen.  相似文献   

3.
The triazine derived ligand reacts with one equivalent of Co(II) salts to give complexes whose architecture depends on the solvent employed: the [2 x 2]-grid like tetranuclear complex and the pincer-like mononuclear complex, obtained respectively by crystallization from nitromethane and from acetonitrile may be interconverted reversibly, the grid-pincer conversion being markedly accelerated by adding an amine.  相似文献   

4.
5.
The pyrazole-based diamide ligand N,N'-bis(2-pyridylmethyl)pyrazole-3,5-dicarboxamide (H(3)L) has been structurally characterised and successfully employed in the preparation of [2 x 2] grid-type complexes. Thus, the reaction of H(3)L with Cu(ClO(4))2.6H(2)O or Ni(ClO(4))2.6H(2)O in the presence of added base (NaOH) affords the tetranuclear complexes [M(4)(HL(4))].8H(2)O (1: M = Cu, 2: M = Ni). Employment of a mixture of the two metal salts under otherwise identical reaction conditions leads to the formation of the mixed-metal species [Cu(x)Ni(4-x)(HL)(4)].8H(2)O (x相似文献   

6.
Summary Some novel nonelectrolytic complexes of uracil in its anionic form with divalent metal ions were synthesised by heating to reflux a methanolic solution of uracil and a metal salt at pHca. 7.5. The isolated complexes are formulated as [ML2(H2O)2] where M = Mn, Fe, Co, Ni, or Cu; L = C4H3N2O2 Electronic spectra indicate the hexacoordination of the metal ion in all the complexes and also the presence of a weak metal-oxygen interaction. The disappearance of the (NH) band and also the appreciable change both in intensity and position the characteristic bands of the 2-keto group of the uracil in the infrared spectra of all the complexes indicate the chelation of the uracil through C(2)=O and N(3).  相似文献   

7.
《Polyhedron》2005,24(16-17):2102-2107
Four complexes of M(NO3)2(4NOPy-OMe)2, (4NOPy-OMe = 4-(N-tert-butyloxylamino)-2-(methoxymethylenyl)pyridine, and M = MnII, 1; CoII, 2; NiII, 3; CuII, 4), were prepared and fully characterized. X-ray single crystal analysis reveals that four complexes are isostructural. The molecular structures are distorted octahedral in which the methoxy oxygen atoms coordinate to the metal ion by trans-configuration while the pyridyl nitrogen atoms and the nitrate oxygen atoms coordinate by cis-configuration. The magnetic properties of all complexes were investigated by SQUID magneto/susceptometry. Temperature dependence of the molar magnetic susceptibilities in the temperature range of 2–300 K indicated that the magnetic coupling between aminoxyl radicals and metal ion was antiferromagnetic in the complex 1 and were ferromagnetic in the complexes 24. The quantitative analysis based on the spin Hamiltonian, H = −2J(S1SM + SMS2) yielded the best fit as J/kB = −13.4 ± 0.1 K, g = 1.94 ± 0.002, and θ = −0.78 ± 0.02 K for the complex 1, J/kB = 48.7 ± 2.1 K, g = 2.07 ± 0.02, and θ = −2.83 ± 0.41 K for the complex 3 (the data in the temperature range 300–50 K were used), and J/kB = 57.0 ± 1.2 K, g = 2.002 ± 0.004, and θ = −9.8 ± 0.1 K for the complex 4.  相似文献   

8.
A novel bi-tetradentate polythioether ligand, 6,6-methylene-bis(5- mercapto-3-thiahexyl)-4,8-dithiaundecane-1, 11-dithiol (H4L) was synthesized, and its di- and tetranuclear copper(II) complexes were prepared, and characterized by elemental analyses, magnetic moments, 1H-n.m.r., i.r., and Uv/vis spectra. The i.r. data show that the ligand acts in a tetradentate manner and coordinates via one S atom of the thioether and thiol groups. The geometry of the metal chelates is discussed with the help of magnetic and spectroscopic measurements. The elemental analyses, stoichiometry, and spectroscopic data of the complexes indicate that the copper(II) ions are coordinated to the bi-dianion of the ligand. The function of the thiol ligand is to release protons to form copper(II) complexes, (Cu2L).  相似文献   

9.
The reaction of the bis-chelating ligand 1,2-bis(2,2'-bipyridine-6-yl)ethane (L) with the trinuclear species of formula [Mn(3)O(O(2)CR)(6)(py)(3)](ClO(4)) (R = Me (1); R = Et (2); R = Ph (3)) has afforded the new tetranuclear mixed-valent complexes [Mn(4)O(2)(O(2)CR)(4)L(2)](ClO(4))(2) (R = Me (4); R = Et (5); R = Ph (6)) and [Mn(4)O(2)(OMe)(3)(O(2)CR)(2)L(2)(MeOH)](ClO(4))(2) (R = Me (7); R = Et (8); R = Ph (9)). Complexes 4-6 were obtained in yields of 20%, 44%, and 37%, respectively. They are mixed-valent, with an average Mn oxidation state of +2.5. Complexes 7-9 were obtained in yields of 57%, 65%, and 70%, respectively. They are also mixed-valent, but with an average Mn oxidation state of +2.75. Complexes 4 x 2THF and 9 x 3MeOH x H(2)O crystallize in the triclinic space group P1 macro and contain [Mn(4)(mu(3)-O)(2)](6+) and [Mn(4)(mu(3)-O)(2)(mu-OMe)(2)](5+) cores, respectively, the latter being a new structural type in the family of Mn(4) complexes. Reactivity studies of 4-9 have shown that 4-6 can be converted into 7-9, respectively, and vice versa. The magnetic properties of 5 and 9 have been studied by dc and ac magnetic susceptibility techniques. Complex 5 displays antiferromagnetic coupling between its Mn ions resulting in a spin ground state of S = 0. Complex 9 also displays antiferromagnetic coupling, but the resulting ground state is S = (7)/(2), as confirmed by fitting magnetization versus field data collected for 9 at low temperatures, which gave S = (7)/(2), D = -0.77 cm(-1), and g = 1.79. Complex 9 exhibits a frequency-dependent out-of-phase ac susceptibility peak, indicative of the slow magnetization relaxation that is diagnostic of single-molecule magnetism behavior.  相似文献   

10.
With the new substituted pyrazine ligand pyrazine-2,3-dicarboxylic acid bis[(pyridin-2-ylmethyl)amide], H(2)L, a binuclear complex [Cu(2)(LH)(Cl(3))(H(2)O)].H(2)O (1) and two [2 x 2]G grid complexes, [[Cu(4)(LH)(4)](ClO(4))(4)].5CH(3)OH.4H(2)O (2) and [[Ni(4)(LH)(4)]Cl(4)].5CH(3)CN.13H(2)O (3), have been synthesized and characterized spectroscopically and crystallographically. The ligand H(2)L crystallized in the triclinic space group P1, with a = 4.9882(7) A, b = 12.079(2) A, c = 14.454(2) A, alpha = 107.08(2) degrees, beta = 98.61(2) degrees, gamma = 97.54(2) degrees, V = 808.8(2) A(3), Z = 2, R1 = 0.0747, and R(w) = 0.1829 for 1319 observed reflections [I > 2 sigma(I)]. The molecule is L-shaped with a strong intramolecular bifurcated hydrogen bond in half of the molecule. In the crystal the molecules are linked by an intermolecular hydrogen bond to form a 1D polymer. The binuclear complex [Cu(2)(LH)(Cl(3))(H(2)O)].H(2)O (1) crystallized in the monoclinic space group P2(1)/a, with a = 8.6859(7) A, b = 28.060(2) A, c = 9.5334(9) A, beta = 107.89(1) degrees, V = 2211.2(3) A(3), Z = 4, R1 = 0.039, and R(w) = 0.097 for 1408 observed reflections [I > 2 sigma(I)]. There are two independent copper atoms both having square pyramidal geometry. Both coordinate to a pyrazine, a pyridine, and an amide N atom. Two chlorines complete the coordination sphere of one of the copper atoms, while one chlorine atom and a water molecule complete the coordination sphere of the other. The copper(II) [2 x 2] grid complex [[Cu(4)(LH)(4)](ClO(4))(4)].5CH(3)OH.4H(2)O (2) crystallized in the triclinic space group P1, with a = 17.1515(14) A, b = 17.7507(13) A, c = 19.3333(15) A, alpha = 67.34(1) degrees, beta = 69.79(1) degrees, gamma = 71.50(1) degrees, V = 4980.3(7) A(3), Z = 2, R1 = 0.083, and R(w) = 0.207 for 5532 observed reflections [I > 2 sigma(I)]. The four Cu(II) atoms are octahedrally coordinated by two pyrazine, two pyridine, and two amide N atoms and occupy the corners of a [2 x 2] grid with edge lengths, Cu...Cu, varying from 7.01 to 7.39 A. The nickel(II) [2 x 2] grid complex [[Ni(4)(LH)(4)]Cl(4)].5CH(3)CN.13H(2)O (3) crystallized in the monoclinic space group C2/c, with a = 16.3388(10) A, b = 29.754(2) A, c = 20.857(1) A, beta = 101.845(1) degrees, V = 9923.6(12) A(3), Z = 4, R1 = 0.050, and wR2 = 0.101 for 3391 observed reflections [I > 2 sigma(I)]. Here the complex possesses C(2) symmetry and again each metal atom is octahedrally coordinated to two pyrazine, two pyridine, and two amide N atoms. They occupy the corners of a [2 x 2] grid with an average edge length, Ni.Ni, of 6.97 A. Of the four anions (ClO(4)(-)'s in 2 and Cl(-)'s in 3) required to equilibrate the charges in the grid complexes, two are encapsulated, one above and one below the plane of the four metal atoms. The remaining two anions are located between the "wings" of the ligands. Magnetic susceptibility measurements indicate that the binuclear complex 1 is antiferromagnetic, with a J value of -15.07 cm(-1). This is larger than the J values found for the Cu(II) (2) and Ni(II) (3) grid complexes, which were -5.87 and -2.64 cm(-1), respectively. DFT calculations have been carried out to explain the difference in the J values found for complexes 1 and 2.  相似文献   

11.
4,6-Diacetylresorcinol serves as a starting point for the generation of multidentate S/N/O or O/N/O symmetrical chelating agents by condensation with thiosemicarbazide or semicarbazide to yield the corresponding bis(thiosemicarbazone) H4L1 or bis(semicarbazone) H4L2, respectively. Reaction of H4L1 and H4L2 with M(NO3)2·6H2O (M?=?Co or Ni) afforded dimeric complexes for H4L1 and binuclear complexes for H4L2, revealing the tendency of S to form bridges. The dimeric cobalt complexes of H4L1 are very interesting in that they contain CoII/CoIII, side/side, low-spin octahedral coordinated CoIII-ions and high-spin square-planar coordinated CoII-ions. These complexes have the general formula [(H2L1)2Co2(H2O) (NO3)]·nEtOH. Arguments supporting these anomalous CoII/CoIII structures are based on a pronounced decrease in their magnetic moments, elemental and thermal analyses, visible and IR spectra, as well as their unreactivity towards organic bases such as 1,10-phenanthroline (phen), 2,2′-bipyridine (Bpy), N,N,N′,N′-tetramethylethylenediamine (Tmen) and 8-hydroxyquinoline (oxine, Ox). The dimeric octahedral NiII complex [(H2L1)2Ni2(H2O)4]·3H2O showed higher reactivity towards phen and Bpy and formed adducts; [(HL1)Ni2(B)(H2O)5] NO3 (B?=?phen or Bpy). In the presence of oxine, the dimeric brown paramagnetic octahedral complex [(H2L1)2Ni2(H2O)4]·3H2O was transformed to the dimeric brick-red diamagnetic square-planar complex [(H3L1)2Ni2](NO3)2. The latter showed dramatic behavior in its 1H NMR spectrum in DMSO-d 6, which was explained on the basis of H+-transfer. By contrast, the binuclear NiII–H4L2 complex (11) showed higher reactivity towards phen, Bpy and oxine. These reactions afforded mixed dimeric complexes having the molar ratio 2?:?2?:?1 (NiII?:?H4L2?:?base). The binuclear CoII–H4L2 complex afforded an adduct with phen and trinuclear complexes with Bpy and oxine. All complexes were found to be unreactive towards Tmen. Structural characterization was achieved by elemental and thermal analyses, spectral data (electronic, IR, mass and 1H NMR spectra) and conductivity and magnetic susceptibility measurements.  相似文献   

12.
13.
Transition metal (NiII, CoII, and CuII) complexes with 1,2-bis[2-(3-pyridylmethylideneamino)phenylthio]ethane (1) and 1,2-bis[2-(4-pyridylmethylideneamino)phenylthio]ethane (2) were synthesized for the first time by slow diffusion of solutions of compounds 1 or 2 in CH2Cl2 into solutions of MX2 · nH2O (M = Ni, Co, or Cu; X = Cl or NO3; n = 2 or 6) in ethanol. The reactions with CoII and CuII chlorides afford complexes of composition M(L)Cl2 (L = 1 or 2). The reactions of compound 1 with NiII salts produce complexes with 1,2-bis(2-aminophenylthio)ethane. The molecular structure of dinitrato[1,2-bis(2-aminophenylthio)ethane]nickel(ii) was confirmed by X-ray diffraction. The ligands and the complexes were investigated by cyclic voltammetry and rotating disk electrode voltammetry. The initial reduction of the complexes proceeds at the metal atom. The oxidation of the chlorine-containing complexes proceeds at the coordinated chloride anion. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 350–355, February, 2008.  相似文献   

14.
Heteracalixaromatics are an emerging generation of macrocyclic host molecules in supramolecular chemistry. As a typical example of heteracalixaromatics, oxacalix[2]arene[2]triazine adopts a shape-persistent 1,3-alternate conformation and can be easily functionalized. Taking it as a platform, a series of oxacalix[2]arene[2]triazine-based amphiphiles bearing long alkyl chains were synthesized through post-macrocyclization functionalization or 3+1 fragment coupling protocols. The self-assembly behavior of these amphiphiles in a mixture of tetrahydrofuran (THF) and water was investigated. Dynamic light scattering (DLS) measurements revealed that the size of the self-assembled aggregates is dependent on the structure of the amphiphiles. The long alkyl chain substituents and/or intermolecular hydrogen bonds were found to promote the self-assembly.  相似文献   

15.
The self-assembly of new multimetallic complexes of grid-type architecture is described. The binding of a set of tris-terdentate ligands, 1 a-1 d, based on terpyridine-like subunits, with different octahedrally coordinated metal ions leads to the formation of species whose structure depends strongly on the ligand, the metal ion, the counterion, the solvent, and the reaction conditions. Under suitable conditions, the [3 x 3] grid was obtained from the reaction of ligand 1 a with zinc tetrafluoroborate and from ligand 1 b with mercury triflate. The other ligands led to the formation of mainly one compound of composition [M(6)L(5)](12+), which has the structure of an incomplete [2 x 3] grid. The crystal structure of such a [2 x 3] grid, [Co(6)(1 d)(5)](12+), has been determined. In this complex, the three central pyrimidine-pyridine-pyrimidine non-coordinating sites adopt transoid NCbond;CN conformations. The much less stable cisoid conformations, the "pinching" of the coordination sites in the complex, the weaker donor strength of the central binding site, and the steric demand of the substituents are all factors contributing to the reluctance to produce the [3 x 3] structure. A subtle interplay between the nature of the metal, the steric demand of the ligand, the reaction conditions, and the type of counterion determine the product of self-assembly. The results obtained show that by tuning the parameters, complexes containing six or nine octahedrally coordinated metal ions in a well-defined grid-type arrangement are accessible. Both types of arrays, [2 x 3] and [3 x 3 ], are of interest as self-assembled inorganic architectures of well-defined structure and nuclearity that may be suitable prototypes for selective information storage media.  相似文献   

16.
Four dinuclear complexes of composition [MII2(L)2].xS [M=Co, x=0.5, S=1,4-dioxane (1.0.5 1,4-dioxane); Ni, x=0 (2) [single crystals have x=2, S=diethyl ether (2.2 diethyl ether)]; Cu, x=0 (3); Zn, x=0.5, S=1,4-dioxane (4.0.5 1,4-dioxane)] have been synthesized using a new tripodal ligand [2,4-di tert-butyl-6-{[(2-pyridyl)ethyl](2-hydroxybenzyl)-aminomethyl}-phenol (H2L)], in its deprotonated form, providing a N 2O 2 donor set. Crystallographic analyses reveal that the complexes have a similar diphenoxo-bridged structure. Each metal ion is terminally coordinated by 2,4-di tert-butyl-phenolate oxygen, a tertiary amine, and a pyridyl nitrogen. From each ligand, unsubstituted phenolate oxygen provides bridging coordination. Thus, each metal center assumes M (II)N 2O 3 coordination. Whereas the geometry around the metal ion in 1.0.5 1,4-dioxane, 2.2 diethyl ether and, 4.0.5 1,4-dioxane is distorted trigonal-bipyramidal, in 3 each copper(II) center is in a square-pyramidal environment. Temperature-dependent magnetic behavior has been investigated to reveal intramolecular antiferromagnetic exchange coupling for these compounds (-J=6.1, 28.6, and 359 cm(-1) for 1.0.5 1,4-dioxane, 2, and 3, respectively). Spectroscopic properties of the complexes have also been investigated. When examined by cyclic voltammetry (CV), all four complexes undergo in CH2Cl2 two reversible ligand-based (2,4-di tert-butylphenolate unit) one-electron oxidations [E1/2(1)=0.50-0.58 and E1/2(2)=0.63-0.75 V vs SCE (saturated calomel electrode)]. The chemically/coulometrically generated two-electron oxidized form of 3 rearranges to a monomeric species with instantaneous abstraction of the hydrogen atom, and for 4.0.5 1,4-dioxane the dimeric unit remains intact, exhibiting an EPR spectrum characteristic of the presence of ZnII-coordinated phenoxyl radical (UV-vis and EPR spectroscopy). To suggest the site of oxidation (metal or ligand-centered), in each case DFT calculations have been performed at the B3LYP level of theory.  相似文献   

17.
Tetranuclear [Co-Gd](2) complexes were prepared by using trianionic ligands possessing amide, imine, and phenol functions. The structural determinations show that the starting cobalt complexes present square planar or square pyramid environments that are preserved in the final tetranuclear [Co-Gd](2) complexes. These geometrical modifications of the cobalt coordination spheres induce changes in the cobalt spin ground states, going from S = 1/2 in the square planar to S = 3/2 for the square pyramid environments. Depending on the ligand, the complexes display antiferromagnetic or ferromagnetic Co(II)-Gd(III) interactions. The temperature dependence of the magnetic susceptibility-temperature products indicate that the Co-Gd interaction is ferromagnetic when high spin Co ions are concerned and antiferromagnetic in the case of low spin Co ions. This different magnetic behavior can be explained if we observe that the singly occupied σ d(x(2)-y(2)) orbital is populated (S = 3/2 Co ions) or unoccupied (S = 1/2 Co ions). Such an observation furnishes invaluable information for the understanding of the more general 3d-4f magnetic interactions.  相似文献   

18.
New homo- and heterometallic, hexa- and pentanuclear complexes of formula {[Cu2(mpba)2(H2O)F][Cu(Me5dien)]4}(PF6)(3).5H2O (1), {[Cu2(Me3mpba)2(H2O)2][Cu(Me5dien)]4}(ClO4)(4).12H2O (2), {[Cu2(ppba)2][Cu(Me5dien)]4}(ClO4)4 (3), and [Ni(cyclam)]{[Cu2(mpba)2][Ni(cyclam)]3}(ClO4)(4).6H2O (4) [mpba=1,3-phenylenebis(oxamate), Me3mpba=2,4,6-trimethyl-1,3-phenylenebis(oxamate), ppba=1,4-phenylenebis(oxamate), Me5dien=N,N,N'N' ',N' '-pentamethyldiethylenetriamine, and cyclam=1,4,8,11-tetraazacyclotetradecane] have been synthesized through the use of the "complex-as-ligand/complex-as-metal" strategy. The structures of 1-3 consist of cationic CuII6 entities with an overall [2x2] ladder-type architecture which is made up of two oxamato-bridged CuII3 linear units connected through two m- or p-phenylenediamidate bridges between the two central copper atoms to give a binuclear metallacyclic core of the cyclophane-type. Complex 4 consists of cationic CuII2NiII3 entities with an incomplete [2x2] ladder-type architecture which is made up of oxamato-bridged CuIINiII and CuIINiII2 linear units connected through two m-phenylenediamidate bridges between the two copper atoms to give a binuclear metallacyclophane core. The magnetic properties of 1-3 and 4 have been interpreted according to their distinct "dimer-of-trimers" and "dimer-plus-trimer" structures, respectively, (H=-J(S1A.S3A+S1A.S4A+S2B.S5B+S2B.S6B)-J'S1A.S2B). Complexes 1-4 exhibit moderate to strong antiferromagnetic coupling through the oxamate bridges (-JCu-Cu=81.3-105.9 cm-1; -JCu-Ni=111.6 cm-1) in the trinuclear and/or binuclear units. Within the binuclear metallacyclophane core, a weak to moderate ferromagnetic coupling (J'Cu-Cu=1.7-9.0 cm-1) operates through the double m-phenylenediamidate bridge, while a strong antiferromagnetic coupling (J'Cu-Cu=-120.6 cm-1) is mediated by the double p-phenylenediamidate bridge.  相似文献   

19.
The novel binucleating ligand, 6,6 prime-methylene-bis(5 prime-amino-3 prime,4 prime-benzo-2 prime-thiapentyl)-1,11-diamino-2,3:9,10-dibenzo-4,8-dithiaundecane (H4L) was prepared and reacted with copper(II) salts in dry MeOH to yield mixtures of copper(I) and copper(II) complexes with Cl- and ClO-4 counter ions. The amine functions on the ligand release protons to form copper(I) complexes: (Cu2L)X2, where X=Cl−, ClO4-. The complexes were oxidized to (Cu2L)X4 with H2O2 in DMF; Cu(NO3)2 gave a different complex, [Cu2(H4L)(NO3)2](NO3)2, as regards proton releasing ability, coordination and oxidation number. Evidence for the structures of this new tetraamino-tetrathioether ligand and its copper complexes is provided by 1H-, 13C-n.m.r., mass, u.v.–vis., i.r. spectra, elemental analyses, molar conductivities and magnetic moments. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
A new representative of calix[4]arene-containing tetranuclear manganese complexes of the [MnII 2MnIII 2] type was obtained. According to the data of magnetoochemical studies, the complex exhibits properties of molecular magnet at the temperature below 5 K. Parameters of the exchange interaction and the activation energy were determined. The influence of the peripheral environment on the magnetic properties of the tetranuclear manganese framework in the structure of the complex was revealed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号