首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The channel-forming peptide melittin was incorporated into a biomimetic membrane consisting of a mercury electrode coated with a thiolipid monolayer, with a lipid monolayer self-assembled on top of it. The thiolipid consisted of a hydrophilic tetraethyleneoxy chain terminated at one end with a disulfide group, for anchoring to the mercury surface, and covalently linked at the other end to two diphytanyl chains, which formed a lipid bilayer with the overhanging lipid monolayer. The conductance of the lipid bilayer in contact with aqueous 0.1 M KCl was measured by electrochemical impedance spectroscopy over a frequency range from 1 x 10(-2) to 1 x 10(5) Hz and a potential range of 0.7 V for different compositions of the outer lipid monolayer. The conductance increases abruptly above the background level at sufficiently negative applied potentials, attaining a maximum value that increases with the composition of the outer monolayer in the order PC/chol (60:40) < PC < PC/SM/chol (59:15:26) < PS, with PC = phosphatidylcholine, chol = cholesterol, SM = sphingomyelin, and PS = phosphatidylserine. The higher the maximum conductance, the less negative the applied potential at which it is attained. This behavior is also discussed using a model of the electrified interphase.  相似文献   

2.
The channel-forming protein OmpF porin was incorporated in a biomimetic membrane consisting of a lipid bilayer tethered to a mercury electrode via a thiolipid, and it was investigated in aqueous KCl by electrochemical impedance spectroscopy. The impedance spectra, recorded from 1 x 10(-2) to 1 x 10(5) Hz over a potential range of 0.7 V, were fitted to an equivalent circuit consisting of four RC meshes. The dependence of the resulting circuit elements upon the applied potential was interpreted on the basis of a general approximate approach based on a model of the electrified interphase and on the kinetics of the translocation of potassium and chloride ions across the lipid bilayer, assisted by the OmpF porin.  相似文献   

3.
Tethered bilayer lipid membranes (tBLMs) are increasingly used to study biological membranes, membrane proteins and a variety of related topics. A tBLM is formed by binding a lipid bilayer to a metal surface (usually gold) via a hydrophilic tether (usually an ethyleneoxy chain). In this report we present an electrochemical study on ubiquinone in a tBLM which has provided insights into the properties of this hydrophilic layer, which has a very limited capability of storing and releasing protons. It is concluded that the often observed decrease in tBLM resistance upon addition of ionophores (or protonophores) could be due to the penetration of ions (or protons) into the membrane rather than transport through the membrane.  相似文献   

4.
Voltage-gated biological ion channels were simulated by insertion of the peptaibol antibiotic alamethicin into reconstituted phosphatidylcholine bilayer lipid membranes (BLMs). Scanning electrochemical microscopy (SECM) was utilized to probe initial BLM resistivity, the insertion of alamethicin pores, and mass transport across the membrane. Acquired SECM images show the spatial location of inserted pore bundles, the verification of voltage control over the pore conformational state (open/closed), and variations in passive mass transport corresponding to different topographical areas of the BLM. SECM images were also used to evaluate overall BLM integrity prior to insertion as well as transport (flux in open state) and leakage (flux in closed state) currents following insertion.  相似文献   

5.
Mimetic functional membranes on solid support are now emerging for the development of membrane biosensor or for the study of membrane-mediated processes and should have an important impact on biodiagnostics. We established a method to reconstitute a membrane protein into a lipid membrane in a selective orientation on a solid support. Membrane protein OprM, a component of OprM-MexA-MexB multidrug efflux pump, solubilized in detergent was immobilized via its extracellular domain on aminosilane-modified silica surface. The oriented protein was reconstituted into a lipid membrane by detergent removal. The membrane protein reconstitution process carried out on silica nanoparticles and on planar silica surfaces was followed by cryo-electron microscopy (cryo-EM) and quartz crystal microbalance with dissipation monitoring (QCM-D) respectively. The selective protein orientation on aminosilane-modified silica surface was assessed by cryo-EM and was compared to the nonspecific protein deposition on silica surface. Finally, the binding of MexA, a periplasmic component of the tripartite efflux complex, was monitored with QCM-D on the oriented OprM protein monolayer. The large adsorbed mass gave a direct evidence of the high affinity of MexA with the periplasmic helical part of OprM.  相似文献   

6.
Large unilamellar liposomes were prepared by hydration of 1-palmitoyl-2-oleylphosphatydilcholine (POPC) films and subsequent extrusion of the obtained liposomal suspension. Inclusion of cholesterol and cardanol brings about a stabilization of the membranes of the liposomes, as determined by their rates of release of entrapped 5(6)-carboxyfluorescein. The liposome breakdown was promoted by a non-ionic surfactant (Triton X-100) and the kinetic measurements were carried out by fluorimetry in water at 25 degrees C. Morphological analyses of giant POPC liposomes in the presence and in the absence of both guests were also performed. The results obtained suggest the use of cardanol (an easy available natural product) as a replacement for cholesterol as a new possibility for stabilizing liposomes in drug targetting.  相似文献   

7.
The study and the exploitation of membrane proteins for drug screening applications requires a controllable and reliable method for their delivery into an artificial suspended membrane platform based on lab-on-a-chip technology. In this work, a polymeric device for forming lipid bilayers suitable for electrophysiology studies and biosensor applications is presented. The chip supports a single bilayer and is configured for controlled protein delivery through on-chip microfluidics. In order to demonstrate the principle of protein delivery, the potassium channel KcsA was reconstituted into proteoliposomes, which were then fused with the suspended bilayer on-chip. Fusion of single proteoliposomes with the membrane was identified electrically. Single channel conductance measurements of KcsA in the on-chip bilayer were recorded and these were compared to previously published data obtained with a conventional planar bilayer system.  相似文献   

8.
When a giant vesicle, composed of neutral and anionic lipid (90:10 mol %), comes into contact with various poly-l-lysines (MW 500-29 300), ropelike structures form within the vesicle interior. By using fluorescence lipids and epi-fluorescence microscopy, we have shown that both neutral and anionic lipids are constituents of the ropes. Evidence that the ropes are also comprised of poly-l-lysine comes from two experiments: (a) direct microinjection of poly(acrylic acid) into rope-containing vesicles causes the ropes to contract into small particles, an observation consistent with a polycation/polyanion interaction; and (b) direct microinjection of fluorescein isothiocyanate (a compound that covalently labels poly-l-lysine with a fluorescent moiety) into rope-containing vesicles leads to fluorescent ropes. The results may be explained by a model in which poly-l-lysine binds to the vesicle exterior, forms a domain, and enters the vesicle through defects or at the domain boundary. The model helps explain the ability of poly-l-lysine to mediate the permeation of a cancer drug, doxorubicine, into the vesicle interior.  相似文献   

9.
A novel helical hexadecapeptide carrying a poly(ethylene glycol) (PEG) chain at the N terminal was synthesized. The N and C terminals of the compound are labeled with a fluorescein isothiocyanate (FITC) group and an N-ethylcarbazolyl group (ECz), respectively. An octapeptide carrying the same groups and a hexadecapeptide without a PEG chain were also synthesized and used as control. A mixture of the peptide and dimyristoylphosphatidylcholine was sonicated in a buffer to prepare the liposome. The orientation as well as direction of the helical segment in the lipid bilayer were analyzed by quenching experiments of the FITC and the ECz fluorescence. The results clearly indicated that the helical segment of the peptide penetrated into the lipid bilayer with vertical orientation in both the gel and liquid crystalline states of the lipid bilayer. Notably, the bulky N terminal was left behind in the outer aqueous phase of liposome, meaning that the C terminal of the peptide points to the inner aqueous phase of liposome. The insertion mode of the helical peptide into a bilayer membrane is therefore well-regulated in terms of the orientation and the directionality by designing the balance between the PEG chain and the helix length. The methodology presented here will initiate a way to construct artificial functional molecular systems that can induce vectorial transport phenomena as seen in biological systems.  相似文献   

10.
A mathematical model of two-phase frontal polymerization in a moving conversion layer is proposed. Using fractional differential-integral calculus, an analytical solution for temperatures in the vicinity of the phase boundary (melting-polymerization) and the dependence of temperature at the front on the rate of the motion of the phase transition boundary are obtained. A formula for the front advancement rate that agrees with the experimental results is found, and a method for estimating the effective activation energy of frontal polymerization is proposed.  相似文献   

11.
12.
Addition of the aminoglycoside antibiotic, gentamicin (GM), to one side of a bilayer lipid membrane (BLM) results in a potential difference across the membrane. Evidence is presented that the membrane potential is caused by the adsorption of GM, bearing four positive charges, on the BLM surface. The experimental results are subjected to a quantitative analysis based on the double-layer theory and the Langmuir adsorption isotherm. The adsorption is saturated (i.e., the BLM is fully covered) at the bulk GM concentration of about 80 μmol/1. At this point, the calculated GM-induced increase in the BLM surface charge density is σ = 0.0054 C m−2, which is equivalent to one positive charge per 50 lipids or one molecule of GM per 200 lipids.  相似文献   

13.
The use of nanosphere lithography to construct two-dimensional arrays of polystyrene (PS) particles coated with multilayered polyelectrolyte (PE) shells and truncated eggshell structures composed of PE thin layers is reported. The truncated eggshell PE structures were produced by extraction of the PS particle cores with toluene. The core-extraction process ruptures the apex of the PE coating and causes a slight expansion of the PE thin layers. Aniline hydrochloride was infiltrated into the PE shells and subsequently electropolymerized to yield an array of a composite containing polyaniline (PAni) and PE thin shells. Voltammetric, quartz crystal microbalance, and reflectance Fourier transform infrared spectroscopic measurements indicate that aniline monomers were confined within the thin PE shells and the electropolymerization occurred in the interior of the PE shell. The PE thickness governs the amount of infiltrated monomer and the ultimate loading of the PAni in the truncated eggshell structure. Surface-structure imaging by atomic force microscopy and scanning electron microscopy, carried out after each step of the fabrication process, shows the influence of the PE thickness on the organization and dimensions of the arrays. Thus, the PE thin shells composed of different layers can function as nanometer-sized vessels for the entrapment of charged species for further construction of composite materials and surface modifications. This approach affords a new avenue for the synthesis of new materials that combine the unique properties of conductive polymers and the controllability of template-directed surface reactions.  相似文献   

14.
A novel and facile method for the preparation of an enzyme-immobilized microreactor has been developed in which enzymes are immobilized as an enzyme-polymer membrane formed on the inner wall of the microchannel by a cross-linking polymerization method; the resulting microreactor shows excellent reaction performance and stability against denaturating agents.  相似文献   

15.
Support from the support: Tethered bilayer lipid membranes containing the cation-channel-forming peptide gramicidin?A were assembled on nanostructured Au films. The combination of surface-enhanced infrared absorption (SEIRA) and electrochemical impedance spectroscopy (EIS) was used for the in situ structural and functional characterization of gramicidin?A in the same device.  相似文献   

16.
17.
Recent experiments demonstrate transfer of lipid molecules between a charged, supported lipid membrane (SLB) and vesicles of opposite charge when the latter adsorb on the SLB. A simple phenomenological bead model has been developed to simulate this process. Beads were defined to be of three types, ‘n’, ‘p’, and ‘0’, representing POPS (negatively charged), POEPC (positively charged), and POPC (neutral but zwitterionic) lipids, respectively. Phenomenological bead–bead interaction potentials and lipid transfer rate constants were used to account for the overall interaction and transfer kinetics. Using different bead mixtures in both the adsorbing vesicle and in the SLB (representing differently composed/charged vesicles and SLBs as in the reported experiments), we clarify under which circumstances a vesicle adsorbs to the SLB, and whether it, after lipid transfer and changed composition of the SLB and vesicle, desorbs back to the bulk again or not. With this model we can reproduce and provide a conceptual picture for the experimental findings.  相似文献   

18.
A planar lipid bilayer which is widely used for the electrophysiological study of membrane proteins in laboratories is reconstituted using a micro-fluidic system, in a manner that is suitable for automated processing. We fabricated micro-channels on both sides of the substrate, which are connected through a 100-200 microm aperture, and showed that the bilayer can be formed at the aperture by flowing the lipid solution and buffer, alternately. Parylene coating is found to be suitable for both bilayer formation and electric noise reduction. Future applications include a high-sensitivity ion sensor chip and a high-throughput drug screening device.  相似文献   

19.
New imine monomers containing C-aryl and N-cyano substituents were synthesized and polymerized by both radical and anionic initiation. Homopolymerization yielded low molecular weight polymers (Mn < 2100). Higher yields were obtained with anionic initiation rather than radical initiation. Radical initiated copolymerization with p-methoxystyrene gave low yields of low molecular weight copolymers. Radical initiated copolymerization with methyl acrylate gave copolymers of 15,000–,32,000 molecular weight in moderate yields, but with rather low incorporation of the imine monomer. The C-substituent affected the anionic and free radical reactivity similarly. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2703–2710, 1997  相似文献   

20.
Cellular energy transduction processes are often driven by transmembrane ion gradients, and numerous artificial biomembrane systems have been developed that allow for chemically or light-induced charge transport into/out of liposomes. Liposomal architectures, however, are not readily interfaced to a solid-state transducer. Formation of an ion gradient across a planar-supported membrane, "wired" to a substrate electrode, may ultimately allow utilization of the potential energy to drive other electrochemical processes. Described here is a novel conductive polymer/planar waveguide assembly that provides for highly sensitive transduction of proton transport across a planar-supported lipid bilayer (PSLB). A quinone proton shuttle is embedded in the PSLB, which is coupled to the planar optical waveguide electrode through a pH-sensitive, self-assembled conductive polymer film. Interfacial potential and absorbance changes in the conductive polymer film provide for sensitive characterization of transmembrane proton transport. The general and flexible nature of this architecture makes it adaptable to many different types of transmembrane transport chemistries, particularly light-activated systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号