首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of β-cyclodextrin with allyl bromide in dimethyl sulfoxide affords 2-О-allyl-β-cyclodextrin, while in dimethylformamide 6-О-allyl-β-cyclodextrin is formed. Optimal conditions of the reaction were found allowing to obtain the target products in quantitative yield.  相似文献   

2.
The objective of this research was to improve the aqueous solubility, dissolution rate and, consequently, bioavailability of diacerein, along with avoiding its side effect of diarrhea, by complexation with β-cyclodextrin (β-CD) and HP-β-cyclodextrin (HP-β-CD). Phase solubility curve was classified as an AN type for both the CDs, which indicated formation of complex of diacerein with β-CD and HP-β-CD in 1:1 stoichiometry and demonstrating that both CDs are proportionally less effective at higher concentrations. The complexes were prepared by kneading method and were evaluated to study the effect of complexation on aqueous solubility and rate of dissolution in phosphate buffer (pH 6.8). Based on the dissolution profile HP-β-CD was selected for preparing fast disintegrating tablet of diacerein which was compared with marketed formulation (MF-J). The HP-β-CD complex was probed for Fourier transform infrared spectroscopy, differential scanning calorimetry, and powder X-ray diffraction studies which evidenced stable complex formation and increase in amorphousness of diacerein in complex. In brief, the characterization studies confirmed the inclusion of diacerein within the non-polar cavity of HP-β-CD. HP-β-CD complex showed improved in vitro drug release profile compared to pure drug and similar to that of marketed formulation respectively.  相似文献   

3.
On the basis of hydrophilic copolymers of N-vinylamides??N-vinylpyrrolidone and N-methyl-N-vinylacetamide??that contain carboxylic or activated ester groups, new polymeric ??-cyclodextrin derivatives are synthesized via polymer-analogous transformations. Their solubility in water depends on the content of ??-cyclodextrin and the types of hydrophilic and reactive comonomers.  相似文献   

4.
Stability constants for the complexes of anionic, neutral (zwitterionic) and protonated forms of l- and d-enantiomers of eight amino acids with β-cyclodextrin and the positively charged quaternary ammonium β-cyclodextrin (QA-β-CD, DS?=?3.6?±?0.3) have been determined by spectrophotometric and pH-potentiometric methods. The highest stability constants have been obtained for the aromatic amino acids phenylalanine, tyrosine and tryptophan. Except the dianion of tyrosine and QA-β-CD, values for the anions in the range of 80–120 have been found, the stability constants for the zwitterionic forms are much smaller and complex formation is negligible with the protonated species. In the case of the other amino acids the differences are less pronounced. The results are interpreted in terms of hydrogen bonding, steric effects and electrostatic interactions between the amino acid moiety and the rims of the cyclodextrins, in addition to the inclusion of the side chain, and are supported by 1H and 13C NMR investigations on the systems containing l-phenylalanine and l-tyrosine. The differences between the complex formation constants of the l- and d-enantiomers do not exceed the limits of experimental error in most cases.  相似文献   

5.
6.
Complexation of ebastine (EB) with hydroxypropyl and methyl-β-cyclodextrin (HP-β-CD and Me-β-CD) was studied in aqueous solutions and in the solid state. The formation of inclusion complexes in aqueous solutions was analysed by the solubility method. The assays were designed using low CD concentrations compared with the solubility of these derivatives in order to avoid non-inclusion phenomena and to obtain a linear increase in EB solubility as a function of CD concentration. The values of complexation efficiency for HP-β-CD and Me-β-CD were 1.9 × 10?2 and 2.1 × 10?2, respectively. It seems that the non polar character of the methyl moiety slightly favoured complexation. In relation to solid state complexation, 1:1 EB:CD systems were prepared by kneading, and by heating a drug-CD mixture at 90 ºC. They were analysed using X ray diffraction analysis by comparison with their respective physical mixtures. A complex with a characteristic diffraction pattern similar to that of the channel structure of β-CD was formed with Me-β-CD in 1:1 melted and 1:2 EB:CD kneaded systems. Complexation with HP-β-CD was not clearly evidenced because only a slight reduction of drug crystallinity was detected. Finally, the loading of EB in two β-CD polymers cross-linked with epichlorohydrin yielded 7.3 and 7.7 mg of EB/g polymer respectively.  相似文献   

7.
The main objective of this research is to improve the dissolution rate of artemisinin (ART) by fabrication with β-cyclodextrin (β-CD) as a hydrophilic carrier. Artemisinin nanoparticles and ART/β-CD complexes were successfully fabricated by means of evaporative precipitation of nanosuspension. Characterization of the samples was done by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and dissolution tester. Percent dissolution efficiency, mean dissolution time, relative dissolution and similarity factor were calculated for the statistical analysis of dissolution data. FT-IR showed some interaction between ART and β-CD, which can be due to the formation of some ART/β-CD complexes. XRD study indicated the presence of two polymorphs of ART, i.e. orthorhombic and triclinic form. Original ART particles and ART nanoparticles fabricated were orthorhombic whereas the free ART in the ART/β-CD complexes (not forming complex with β-CD) was of triclinic form. The crystallinity of ART reduced and more and more ART/β-CD complexes were formed with increasing concentration of β-CD as indicated by the DSC, XRD and FT-IR studies. Artemisinin nanoparticles and ART/β-CD complexes showed significantly faster dissolution than the pure drug due to smaller size (larger surface area), formation of the inclusion complex with β-CD, formation of the triclinic form for remaining free ART (not forming complex with β-CD), and amorphous state formation. Evaporative precipitation of nanosuspension was able to successfully fabricate artemisinin in the nanoparticles and complex forms with significantly faster dissolution rates than that of the original artemisinin. The two polymorphic forms of ART were also fabricated and studied.  相似文献   

8.
Following the preparation of inclusion complex of cetirizine (CTZ) and β-cyclodextrin (β-CD), the compound was investigated to assess the possibility of modifying the physicochemical properties (solubility, release, stability, permeability) of CTZ after complexation that are vital for subsequent formulation studies involving the said complex. Changes in FT-IR/Raman spectra, DSC thermograms and XRD diffractograms confirmed the formation of a CTZ–β-CD system. Hydrophilic interaction chromatography with a DAD detector was employed to determine alterations of the CTZ concentration during studies following complexation. An analysis of a phase-solubility diagram of cCTZ?=?fcβ-CD indicated a linear rise in the solubility of CTZ as the concentration of β-CD increased. The inclusion of CTZ in a system with β-CD significantly reduced the instability of CTZ in the presence of oxidizing factors. It was also found that regardless of the pH of the acceptor fluids used in the release studies an increase was observed in the concentration of CTZ in CD system compared to its free form. The ability to permeate artificial biological membranes manifested by CTZ after complexation was enhanced as well. In summary, CD has significant potential to mask the bitter taste of CTZ and to counter the instability induced by oxidizing factors.  相似文献   

9.
To clarify the effect of cyclodextrin (CD) on the stability of cytochrome c, the thermal denaturation of cytochrome c was measured by differential scanning calorimetry in aqueous solutions of β-CD modified with three substituents: methyl, acetyl, and 2-hydroxylpropyl groups. The midpoint temperature of thermal denaturation decreased with the addition of modified β-CDs, indicating that cytochrome c was destabilized. The destabilization effect of CD depended on the substituent and increased in the order of acetyl>methyl>2-hydroxypropyl. The estimated binding number and binding constant of the modified β-CDs for cytochrome c are 5.0 ± 1.0 and 10.3 ± 2.9 M?1 for methyl-β-CD, 13.8 ± 3.6 and 4.7 ± 1.6 M?1 for acetyl-β-CD, and 2.8 ± 0.9 and 7.0 ± 3.0 M?1 for 2-hydroxypropyl-β-CD. The destabilization effect of acetyl-β-CD is the highest because many CD molecules interact with proteins by the inclusion effect of CD and the inhibition effect of the acetyl group on the hydrogen bond in the secondary structure. In contrast, the stabilization effect of 2-hydroxypropyl-β-CD is the smallest because the steric exclusion of the 2-hydroxypropyl group inhibits the binding of CD to cytochrome c as compared with the smaller structure of the methyl group. Dependency of the destabilization effect on the molar ratio of CD to cytochrome c suggests that the destabilization effect of CD is caused not only by the “direct” interaction of CD with proteins but also by the “indirect” interaction of CD which promotes the solvation of hydrophobic groups by altering the water structure as observed in urea.  相似文献   

10.
Sulfanilamide belongs to the group of drugs that have a bacteriostatic effect on different pathogenic microorganisms. This activity originates from the competitive antagonism with p-aminobenzoic acid, which is an integral part of folic acid. The safe use of sulfanilamide is limited due to poor solubility in the aqueous medium. Therefore, the aim of this paper is the synthesis of sulfanilamide, as well as preparing and structural characterization of its inclusion complexes with cyclodextrins. The crude sulfanilamide was obtained in the synthesis between acetanilide and chlorosulfonic acid according to the standard procedure. The synthesized sulfanilamide was recrystallized from water in order to obtain the satisfactory purity of the substance. Sufanilamide was complexed with β-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin by the co-precipitation method. A molecular encapsulation of sulfanilamide was confirmed by using FTIR, 1H-NMR, XRD and DSC methods. Phase-solubility techniques were used to assess the formation of the inclusion complex between sulfanilamide and cyclodextrins. The photostability of sulfanilamide and its inclusion complexes was estimated by UVB irradiation in a photochemical reactor by applying the UV–Vis method. Based on the UV–Vis analysis, sulfanilamide:2-hydroxypropyl-β-cyclodextrin complex was presented as more photostable than sulfanilamide:β-cyclodextrin complex and sulfanilamide. The obtained results enable the potential use of these inclusion complexes for the preparation of oral formulations due to the enhanced solubility of sulfanilamide.  相似文献   

11.
The X-ray structure and thermal stability of a -cyclodextrin inclusion complex of the antidepressant paroxetine [(3S-trans)-3-[(1,3-benzodioxol-5-yloxy)methyl]-4-(4-fluorophenyl)piperidine], with the formula ( -cyclodextrin)2...paroxetine...28H2O, are reported. On heating, the crystals dehydrate in two stages and begin to decompose from approximately 270 °C. An X-ray diffraction study at 173K showed that the complex crystallizes in the monoclinic system, space group P21 with a = 15.2262(3), b = 31.4771(1), c = 15.6739(1) Å, = 104.320(1)° and Z = 2 formula units. Refinement on F2 converged at R1 = 0.066, wR2 = 0.182 (21478 reflections). On encapsulation within a head-to-head -cyclodextrin dimer, the paroxetine molecule adopts an unusual `hairpin' conformation, stabilised by intramolecular ... interaction between the phenyl rings. The guest piperidine ring is located at the primary face of one host molecule of the dimer while the fluorophenyl and benzodioxole moieties respectively occupy the dimer interfacial region and the cavity of the second host molecule. Experimental and computed X-ray powder diffraction patterns for the complex are also reported. The mode of stacking of the dimeric complex units is shown to be one of at least three distinct variants which can be identified for -cyclodextrin complexes with similar unit cell dimensions and crystallizing in the same space group.  相似文献   

12.
(?)-Linalool is a monoterpene alcohol which is present in the essential oils of several aromatic plants. Recent studies suggest that (?)-linalool has antimicrobial, anti-inflammatory, anticancer, antioxidant, and antinociceptive properties in different animal models. The aim of this study was to prepare and characterize inclusion complexes of (?)-linalool with β-cyclodextrin (β-CD). Equimolar binary (?)-linalool/β-CD systems were prepared by physical mixture, paste (PM), and slurry methods (SC) and characterized by differential scanning calorimetry, thermogravimetric analysis, FT-IR spectroscopy, X-ray diffractometry, Karl Fisher titration, and scanning electron microscopy. Thermal characterization indicates the occurrence of complexation, mainly in paste complexes, which is present in the interval from 140 to 280 °C a gradual mass loss (4.6 %), probably related to (?)-linalool loss. FT-IR spectra showed changes that may be related to the formation of intermolecular hydrogen bonds between (?)-linalool and β-CD. The new solid-phase formed using the PM and SC methods, had a crystal structure which was different from the original morphology of β-CD.  相似文献   

13.
Summary A series of -cyclodextrin complexes containing various guest molecules was studied using computer-aided molecular modeling and conformation analysis techniques. The geometry of each complex was studied using crystallographic data. The positions of the glycosidic O4 atoms indicate that the -cyclodextrin molecules are elliptically distorted. This distortion can be related to the van der Waals volume of the guest molecules. This correlation is different for aromatic and non-aromatic guest compounds. Rigid body docking experiments demonstrated that in crystal structures the guest molecule occupies a position in the cavity of nearly minimum interaction energy when there are no other molecules having interactions with the guest molecule. From the crystallographic data several rules could be deduced which seem to determine the conformation of -cyclodextrin molecules in complexes. A procedure was developed to construct -cyclodextrin molecules that are able to encompass guest molecules having a given van der Waals volume.  相似文献   

14.
The ways for the practical preparation of stable inclusion complexes of β-cyclodextrin with dihydroxyphenols of various nature are developed. Mutual orientation of hydroxy groups and the nature of the bridge in the bisphenols are shown to affect considerably their ability to the complex formation.  相似文献   

15.
The physicochemical properties and dissolution profile of zaleplon (ZPN) β-cyclodextrin (βCD) inclusion complex were investigated. The phase solubility profile of ZPN with β-cyclodextrin was classified as AL-type. Stability constant with 1:1 molar ratio was calculated from the phase solubility diagram and the aqueous solubility of ZPN was found to be enhanced by 714% (p < 0.001) for β-cyclodextrin. Binary systems of ZPN with βCD were prepared by kneading method. The solid-state properties of complex were characterized by differential scanning calorimetry, Fourier transformation-infrared spectroscopy and powder X-ray diffractometry. It could be concluded that ZPN could form inclusion complex with β-cyclodextrin. The dissolution profile of inclusion complex was determined and compared with those of ZPN alone and its physical mixture. The dissolution rate of ZPN was significantly increased by complexation with βCD, as compared with pure drug and physical mixture.  相似文献   

16.
Two βCD dimers (linked by succinic acid, 2, or ethylenediaminetetraacetic acid, EDTA, 3, bridges) and a negatively charged monomer derivative of βCD, 1, have been synthesized and their ability to solubilize cholesterol in aqueous solution was studied. The three compounds exhibit a great capacity in solubilizing cholesterol as, for instance, concentrations up to 6 mM of cholesterol were measured in the presence of 25 mM of 3. The phase-solubility diagrams of the two dimers exhibit A L type profiles while the monomer 1 follows an A P isotherm. The cholesterol/dimer complexes have 1:1 stoicheiometries while monomer 1 forms two complexes with molar ratios of 1:1 and 1:2 (cholesterol/1). The equilibrium constants are K 1:1 = (5.9 ± 0.3) × 104 M?1 and K 1:1 = (8.8 ± 0.2) × 104 M?1 for 2 and 3, respectively, and K 1:1 = 73 ± 19 M?1 and K 1:2 = 204 ± 65 M?1 for 1. The comparison of K 1:1(3) with the product K 1:1 × K 1:2 (1) reveals that a chelate effect in binding the cholesterol by 3 exists. The structure of the cholesterol/3 complex was studied by ROESY experiments and by molecular dynamics simulations.  相似文献   

17.
Inclusion complexes between the Satureja montana essential oil and β-cyclodextrin were prepared by co-precipitation method with the four oil to β-cyclodextrin ratios of 5:95, 10:90, 15:85 and 20:80 (w/w) in order to determine the effect of the ratio on the inclusion efficiency of β-cyclodextrin for encapsulating oil volatiles. The characterization of the complex involved the analysis of the initial essential oil, the surface and the total extracted oils. The retention of essential oil volatiles reached a maximum of 93.15 % at the oil to β-cyclodextrin ratio of 15:85. Though, the maximum inclusion efficiency of β-cyclodextrin was achieved at the ratio of 20:80. The qualitative and quantitative composition of the volatiles in the total oil extracts was similar to the starting oil which is confirmed the high inhibition zone as antifungal and high antioxidant properties after encapsulation to β-cyclodextrin. This justifies the use of β-cyclodextrin as complexion agent for S. montana essential oil in the food and pharmaceutical industries.  相似文献   

18.
A fluorescence based cholesterol detection method has been developed using competitive host-guest interaction between graphene bound β-cyclodextrin (β-CD) with rhodamine 6G (R6G) and cholesterol. Fluorescence of β-CD incorporated R6G is quenched by graphene but is 'turned on' by cholesterol as it replaces R6G from the β-CD host.  相似文献   

19.
A conformational analysis of three triazole-containing bridged bis-β- cyclodextrins (CD) has been carried out to evaluate their recognition ability. NMR spectroscopy and ITC measurements clearly demonstrate that one of the CD glucopyranose units undergoes a 360° rotation in water so that the spacer linking the two CDs is deeply included into one of the CD cavities. The amplitude of this inversion phenomenon depends on the nature of the spacer and results in a limited accessibility to the CD cavities in line with previous catalytic results.  相似文献   

20.
The reaction of -cyclodextrin (1) with palmitoyl (2) and valeryl (4) chlorides in DMF or Py, unlike previously studied acetylation of 1, involves only the primary hydroxy groups of 1. The outcome of the reaction depends on the reaction conditions and the nature of the acid scavenger used (Et3N, Pri 2NEt, PhNMe2, Py). 13C NMR spectroscopy was shown to be an effective tool in determining the number and position of aliphatic carboxylic acid residues introduced into 1. A hypothesis stating that preliminary formation of a reactive inclusion complex (acid chloride1) is required for the acylation of 1 to occur is proposed and substantiated. This hypothesis provides a unified explanation for a variety of unusual facts observed in the acylation of 1 and its derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号