首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of the present work was to synthesize mononuclear ruthenium complex [RuCl2(CO)2{Te(CH2SiMe3)2}2] (1) by the reaction of Te(CH2SiMe3)2 and [RuCl2(CO)3]2. However, the stoichiometric reaction affords a mixture of 1 and [RuCl2(CO){Te(CH2SiMe3)2}3] (2). The X-ray structures show the formation of the cis(Cl), cis(C), trans(Te) isomer of 1 and the cis(Cl), mer(Te) isomer of 2. The 125Te NMR spectra of the complexes are reported. The complex distribution depends on the initial molar ratio of the reactants. With an excess of [RuCl2(CO)3]2 only 1 is formed. In addition to the stoichiometric reaction, a mixture of 1 and 2 is observed even when using an excess of Te(CH2SiMe3)2. Complex 1 is, however, always the main product. In these cases the 125Te NMR spectra of the reaction solution also indicates the presence of unreacted ligand.  相似文献   

2.
3.
Pyridine-2-carbonitrile (2-CNpy) undergoes Cu(II) or Co(II)-promoted hydrolysis to pyridine-2-carboxamide (piaH) and/or pyridine-2-carboxylic acid (pycH). The pathway of pycH formation depends on the presence of 2-amino-2-hydroxymethyl-1,3-propanediol (AL1) and on the central atom. In the absence of AL1, Co(II) or Cu(II) ions mediate piaH formation under mild reaction conditions in the first hydrolytic step. Cu(II) ions assist in piaH transformation to pycH by subsequent reflux. In the presence of AL1 and Co(II), a Co(II) complex containing pyoxaL1 (2-(2-pyridinyl)-4,4-bis(hydroxymethyl)-2-oxazoline) is formed in the first stage; subsequent decomposition of pyoxaL1 under the reflux yields pycH. Under similar conditions, no solid Cu(II) complex with pyoxaL1 can be isolated, but a Cu(II) complex with coordinated pyc anions precipitates from the reaction mixture. The synthesis, spectral and magnetic properties of the complexes [Co(H2O)2 (piaH)2]Cl2, [Co(H2O)2(pyc)2] · 2H2O, [Cu(H2O)2(piaH)2]Cl2, [Cu(pyc)2] and [Cu(pyc)2] · 2H2O, including the structure determination of the latter one, are described.  相似文献   

4.
The combined use of di-2-pyridyl ketone [(py)2CO] and azides (N3) in nickel(II) and cobalt(II) pivalate chemistry has afforded complexes [Ni9(N3)2(O2CCMe3)8{(py)2CO2}4] (1) and [Co9(N3)2(O2CCMe3)8{(py)2CO2}4] (2), where (py)2CO22− is the gem-diolate(−2) form of (py)2CO. The complexes are isostructural and crystallize in the monoclinic P21/c space group. Their molecular structures consist of nine metal(II) ions, eight of which are arranged as two parallel squares flanking the ninth. DC magnetic susceptometry on powdered samples of 1 (1-p) reveal an overall antiferromagnetic behavior, leading to an S = 0 ground state. AC susceptometry reveals out-of-phase signals between 10 and 27 K, and ZFC and FC experiments show a divergence of the two curves below ∼27 K. Magnetization-decay and field-sweep experiments verify the relaxation behavior of the sample. Samples of the complex arising from carefully washed single crystals (1-cr) reveal a similar DC behavior, without however the appearance of cusps in the χΜΤ versus T curves, and no relaxation. The relaxation behavior has been assigned to NiO impurities. The results illustrate the extreme care that should be taken when examining the magnetic properties of apparently analytically pure materials obtained under heating. Complex 2 exhibits an overall antiferromagnetic behavior, without observation of any relaxation phenomena.  相似文献   

5.
The synthesis, characterization and chemistry of novel η3-allyl metal complexes (M = Ir, Rh) are described. The structures of compounds (C5Me4H)Ir(PPh3)Cl2 (1), (C5Me4H)Ir(PPh3)(η3-1-methylallyl)Br (3a), (C5Me4H)Ir(η4-1,3,5-hexatriene) (8), and (C5Me5)Rh(η3-1-ethylallyl)Br (5d) have been determined by X-ray crystallography. Structural comparisons among these complexes are discussed. It is found that the neutral metal allylic complex [CpIrCl(η3-methylallyl)] (5) ionizes in polar solvents to give [CpIr(η3-methylallyl)]+Cl (6) and reaches equilibrium (5 ? 6) at room temperature. Addition of tertiary phosphine ligands to neutral complexes such as [CpIr(η3-methylallyl)Cl], results in the formation of stable ionic phosphine adducts. Factors such as solvent, length of carbon chain, temperature and light are discussed with respect to the formation, stability and structure of the allyl complexes.  相似文献   

6.
7.
Hexanuclear oxo titanium(IV) siloxo carboxylate complexes with the general formula [Ti6O6(OSi(CH3)3)6(OOCR)6] (R = But (1), CH2But (2), C(CH3)2Et (3)) were synthesized in quantitative yield, by the reaction of Ti(OSiMe3)4 with the appropriate organic acid. Crystal structure determination revealed that molecules of 13 are composed of [Ti6-(μ3-O)6] cores stabilized by six synsyn carboxylato bridges and six terminal siloxide ligands. Each metal atom is surrounded by six oxo atoms, capping the triangular faces of the distorted octahedron. Spectral characterization (IR, NMR) of 13 revealed a significant non-equivalence of the carboxylate group interactions, resulting from the asymmetry of the Ti-μ-OOC bonds of the synsyn bridges. The thermal stability of the studied compounds was determined from TGA/DTA analysis.  相似文献   

8.
9.
Several complexes of 2-(indazol-1-yl)-2-thiazoline (TnInA) with the divalent ions Co and Zn have been synthesized by the direct combination of the ligand and the metal chloride or nitrate hydrated salts in ethanol. These complexes have been characterized by a variety of physical–chemical techniques. Moreover, the structures of [CoCl2(TnInA)2] · C2H6O (1) and [(M)(TnInA)2(H2O)2](NO3)2 (M = Co, 3; Zn, 4) were determined by single-crystal X-ray diffraction. In all the complexes, the ligand TnInA bonds to the metal ion through the indazole and thiazoline nitrogen atoms. In complex 1 the environment around the cobalt ion may be described as a distorted octahedron with two TnInA ligands and two chlorine ligands. Compounds 3 and 4 are isostructural with a distorted octahedral geometry around the metal center, being linked to two water molecules and two TnInA ligands. However, in complex [ZnCl2(TnInA)] (2) the zinc atom is four-coordinated with a probable tetrahedral environment with two chloro ligands and one TnInA ligand bonded to the metal ion.  相似文献   

10.
Cadmium(II) complexes of 3-hydroxypicolinic acid, namely [CdI(3-OHpic)(3-OHpicH)(H2O)]2 (1), [Cd(3-OHpic)2(H2O)2] (2) and [Cd(3-OHpic)2]n (3) were prepared and characterized by spectroscopic methods (IR, NMR) and their molecular and crystal structures were determined by X-ray crystal structure analysis. Complexes 1 and 2 were prepared in similar reaction conditions using different cadmium(II) salts: cadmium(II) iodide and cadmium(II) acetate dihydrate, respectively, while 3 was prepared by recrystallization of 2 from N,N-dimethylformamide solution. Various coordination modes of 3-OHpicH in 13 were established in the solid state: bidentate N,O-chelated mode in 1 and 2, monodentate mode through the carboxylate O atom from zwitterionic ligand in 1 and bidentate N,O-chelated and bridging mode in 3. In the DMF solution of all prepared complexes, only monodentate mode of 3-OHpicH binding to cadmium(II) through the carboxylate O atom was established by 1H, 13C, 15N and 113Cd NMR spectroscopy.  相似文献   

11.
Five new hetero-organotellurium (IV) dithiocarbamates O[Si(CH3)2CH2]2TeIS2CN(CH2CH2)2 (1), O[Si(CH3)2CH2]2TeIS2CN(CH2CH)2 (2), O[Si(CH3)2CH2]2TeIS2CN(CH2CH2)2O (3), O[Si(CH3)2CH2]2-TeIS2CN(CH2CH2)2S (4) and O[Si(CH3)2CH2]2TeIS2CN(CH2CH2)2CH2 (5) were prepared from the 2,2,6,6-tetramethyl-1-oxa-4,4-diiodo-4-tellura-2,6-disilacyclohexane and the corresponding dithiocarbamate (dtc) sodium salts in ethanol. The compounds were characterized by means of Elemental Analyses, FAB MS, IR, 1H, 13C, 125Te NMR spectroscopy. The crystal structures of 1, 3 and 4 were determined. Dithiocarbamate ligands display an anisobidentate chelating coordination mode on interacting with the tellurium center in all compounds. The Te(IV) immediate environment can be described as that of a sawhorse structure in which the lone pair is apparently stereochemically active and occupying an equatorial position in a distorted trigonal bipyramid. The two methylene groups occupy the other equatorial positions with a sulfur atom of the dithiocarbamate group and the iodine atom occupying the axial positions. The solid state structures of 3 and 4 exhibit important intermolecular interaction Te?S(2B). This interaction results in the formation of a dimer, which is better described as a distorted octahedron with an apparently inactive lone pair.  相似文献   

12.
13.
The synthesis of the rhenacycles [Re(CO)3(PR3){Ph2P(Se)NP(Se)Ph22Se}], PR3 = PPh3 (1), PMePh2 (2), and PMe2Ph (3) by a straightforward high yield procedure is described. Attempts at the preparation of the spiro [Re(CO)2(Ph2PCH2CH2PPh22P){Ph2P(Se)NP(Se)Ph22Se}] resulted in the formation of complexes [Re2(CO)6{Ph2P(Se)NP(Se)Ph22Se}2(μ-Ph2PCH2CH2PPh2)] (4) and [Re(CO)3(Ph2PCH2CH2PPh22P){Ph2P(Se)NP(Se)Ph2Se}] (5). All new inorganic rhenacycles 1-5 were characterized in solution and in solid state. The X-ray diffraction analysis of [Re(CO)3PPh3{Ph2P(Se)NP(Se)Ph22Se}] showed that its MnSePNPSe ring conformation is sensitive to temperature.  相似文献   

14.
Thermal properties and thermal decompositions of [NEt4]2[M(dmit)2] (M = Ni(II), Pd(II), dmit = 1,3-dithiole-2-thione-4,5-dithiolate) have been studied by thermogravimetry (TG). The TG analysis has shown that the complexes are thermally stable up to 460 K and the decomposition of the complexes occurs in three consecutive stages up to 873 K. A thermal stability scale for [M(dmit)2]n anions was based on the thermal properties. Kinetics parameters, such as activation energy, Ea, and kinetic apparent pre-exponential factor, ln Aapp, have been calculated from the thermogravimetric data at heating rates of 10, 15, 20 and 25 K/min involving differential (Friedman's equation) and integral (Flynn-Wall-Ozawa's equation) methods.  相似文献   

15.
Syntheses of complexes of the type [ML(NO3)2], where M = Co(II), Ni(II), and Cu(II), L = N-(2-pyridylethyl)pyridine-2-carbaldimine, a tridentate ligand, are described. They were characterized by elemental analysis, spectral, magnetic, thermal studies, and X-ray crystallography. In the cobalt (1), nickel (2), and copper (3) complexes, the bivalent metal ion is coordinated by the three nitrogen atoms of the tridentate L with two pyridine-N groups occupying trans positions. Amongst the two nitrates one coordinates in a bidentate fashion while the other adopts a monodentate fashion. The X-band EPR spectra of 1, 2, and 3 in the polycrystalline state and in acetonitrile solution at 77 K are reported. Room temperature vibrating sample magnetometer data of 1, 2, and 3 afforded μeff values respectively of 3.928, 3.897, and 1.952 BM. The thermal stability order is 1 > 2 > 3, showing a reverse Irving-Williams trend.  相似文献   

16.
The reactions of dimethyl-, diethyl- and dibutyltin(IV) oxides with pyridoxine (PN) in toluene/ethanol led to the formation of compounds [SnR2(PN-2H)] which were characterized by EI and FAB mass spectrometry and by IR, Raman, Mössbauer and 1H, 13C and 119Sn NMR spectroscopy. The structures of [SnEt2(PN-2H)] · CH3OH, [SnBu2(PN-2H)] and [SnEt2(PN-2H)(DMSO)] were determined by X-ray diffractometry. The first two contain dimeric [SnR2(PN-2H)]2 units in which two bridging-chelating pyridoxinate anions link the Sn atoms, while in [SnEt2(PN-2H)(DMSO)] the DMSO coordinates to the tin atom via its O atom in a similar dimeric unit.  相似文献   

17.
The compounds [MoCl(NAr)2R] (R=CH2CMe2Ph (1) or CH2CMe3(2); Ar=2,6-Pri2C6H3) have been prepared from [MoCl2(NAr)2(dme)] (dme=1,2-dimethoxyethane) and one equivalent of the respective Grignard reagent RMgCl in diethyl ether. Similarly, the mixed-imido complex [MoCl2(NAr)(NBut)(dme)] affords [MoCl(NAr)(NBut)(CH2CMe2Ph)] (3). Chloride substitution reactions of 1 with the appropriate lithium reagents afford the compounds [MoCp(NAr)2(CH2CMe2Ph)] (4) (Cp=cyclopentadienyl), [MoInd(NAr)2(CH2CMe2Ph)] (5) (Ind=Indenyl), [Mo(OBut)(NAr)2(CH2CMe 2Ph)] (6), [MoMe(NAr)2(CH2CMe2Ph)] (7), [MoMe(PMe3)(NAr)2(CH2CMe 2Ph)] (8) (formed in the presence of PMe3) and [Mo(NHAr)(NAr)2(CH2CMe2P h)](9). In the latter case, a by-product {[Mo(NAr)2(CH2CMe2Ph) ]2(μ-O)}(10) has also been isolated. The crystal structures of 1, 4, 5 and 10 have been determined. All possess distorted tetrahedral metal centres with cis near-linear arylimido ligands; in each case (except 5, for which the evidence is unclear) there are α-agostic interactions present.  相似文献   

18.
A novel macrocyclic hexanuclear manganese(III) 18-metallacrown-6 compound, [Mn6(H2O)6 (anshz)6] · 10DMF, has been prepared using a trianionic pentadentate ligand N-acetyl-5-nitrosalicylhydrazide (anshz3−) and characterized by X-ray diffraction (DMF = N,N-dimethylformamide). The crystal structure contains a neutral 18-membered metallacrown ring consisting of six Mn(III) and six anshz3− ligands. The 18-membered metallacrown ring is formed by the succession of six structural moieties of the type [Mn(III)NN]. Due to the meridional coordination of the ligand to the Mn3+ ion, the ligand enforces the stereochemistry of the Mn3+ ions as a propeller configuration with alternating Δ/Λ forms. The disc-shaped hexanuclear ring shows at its largest diameter about 7.14 Å at entrance, about 9.76 Å at the center of the cavity, respectively. Antibacterial screening data showed that the manganese metallacrown has strong antimicrobial activity against Bacillus subtilis.  相似文献   

19.
Crystals of bis(2,6-dimethylpyridine-N-oxide) sulphate are monoclinic, space group P21/c, a = 14.098(2) Å, b = 7.855(1) Å, c = 15.203(3) Å, β = 104.84(1)°. The crystal structure has been refined to R = 0.0373 (2052 reflections). The disordered SO2−4 anion accepts hydrogen bonds from two protonated 2,6-dimethylpyridine-N-oxides and two alternative conformations of the SO2−4 group are distinguished. The occupancy factor of the predominant orientation is 0.63 and the O...O distances are 2.445(2) and 2.453(4) Å; in the second form (fraction, 0.37), these distances are 2.445(2) and 2.544(9) Å.

The PM3 and AM1 methods predict three minima for the title complex, whereas the SAM1 and BLYP/6-31G methods predict only one. All methods predict that molecular complex 3 is the most stable. The SAM1 geometry is very close to that of BLYP/6-31G.

The Fourier transform IR (FTIR) spectrum shows a very intense and broad (continuum) absorption within the 1600-400 cm−1 region, typical of short hydrogen bonds. There is no absorption in the 3000-2000 cm−1 region expected for the longer hydrogen bond (2.544(9) Å) in the less populated orientation. Isotope and solvent effects are discussed.  相似文献   


20.
A new complex of N-thiophosphorylthiourea PhNHC(S)NHP(S)(OiPr)2 (HL) of formula [(Cu3L3)2] has been synthesized and characterized by single crystal X-ray diffraction, FT-IR, 1H, 31P NMR in solution and by 31P CPMAS NMR spectroscopy in the solid state. A comparison of the structure and the spectral parameters of [(Cu3L3)2] with those of the mononuclear analogue [Cu(PPh3)2L] was performed. In the solid state the aggregate [(Cu3L3)2] represents the first example of a spontaneous “side-by-side” association of two neutral cyclic [Cu3L3] moieties using two Cu-S-Cu bridges formed by the sulfur atoms of the PS-groups. The values of the 1J(31P-63,65Cu) and 2J(31P-31P) coupling constants of the [Cu(PPh3)2]+ moiety in the solid state spectra are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号