首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The explorative lanthanide coordination chemistry of 4′,5′-bis-(propylthio)tetrathiafulvenyl[i]dipyrido[3,2-a:2′,3′-c]phenazine (TTF-dppz) is described. Thereby, four new Ln(III) complexes, [Ln(NO3)3(TTF-dppz)2] with Ln(III) = Nd (1), Eu (2), Gd (3), Tb (4), have been prepared and characterized. An X-ray crystallographic study of [Gd(NO3)3(TTF-dppz)2] (3) shows that the Gd(III) ion is coordinated to six oxygen atoms from three bidentate nitrate ligands and four nitrogen atoms from two bidentate TTF-dppz molecules forming a distorted bicapped square antiprism coordination geometry. The UV-vis spectra of the four Ln(III) complexes show very strong absorption bands in the UV region consistent with ligand centred electronic π-π* transitions and an intense broad absorption band in the visible region corresponding to a spin-allowed electronic π-π* 1ILCT transition from the TTF-dppz ligand. Upon coordination, the 1ILCT band of the free TTF-dppz ligand is bathochromically shifted. The electrochemical studies reveal that all complexes undergo two reversible oxidation and one (quasi)reversible reduction processes, ascribed to the successive oxidations of the TTF moiety and the reduction of the dppz unit, respectively. Moreover, the magnetic properties of complexes 3 and 4 are discussed.  相似文献   

2.
The treatment of InCl3 with MOCH(CF3)2 (M = Li, Na, K) in a 1:6 stoichiometry, followed by recrystallisation results in the formation of the bimetallic “ate” complexes [Na3In(OCH(CF3)2)6(THF)3] (2) and [Li3In(OCH(CF3)2)6(THF)3] (5) from hexane, and [K3In(OCH(CF3)2)6]n (4) from a THF and toluene mixture. If a 1:3 stoichiometry is used chloride containing compounds [Na2InCl(OCH(CF3)2)4(THF)4] (1) and [KInCl2 (OCH(CF3)2)2(THF)3]n · THF (3) are obtained on recrystallisation from hexane. Treatment of GaCl3 with 6 equivalents of LiOC(CH3)2CF3 gives [LiGa(OC(CH3)2CF3)4(THF)2] (6) on recrystallisation from hexane. The protolysis reaction between In(N(SiMe3)2)3, formed in situ from (Me3Si)2NH, nBuLi and Incl3, and HOCH(CH3)CF3 results in isolation of [LiIn(OCH(CH3)CF3)3Bu]2 (7) from hexane. The structures of 2, 4, and 5 all contain the tetranuclear core InO6M3. Compounds 1 and 3 have residual chloride; 1 is a trinuclear species with two THF ligands per Na, while 3 is a linear polymer. Compound 6 has a GaO2Li four-membered parallelogram at its core. Complex 7 has a tetranuclear In2O6Li2 core and an unexpected nBu group on the In atoms. The coordination spheres of the alkali metals in 1-6 include solvated THF while 1-5 display additional close M?F interactions.  相似文献   

3.
New rhodium and iridium complexes, with the formula [MCl(PBz3)(cod)] [M = Rh (1), Ir (2)] and [M(PBz3)2(cod)]PF6 [M = Rh (3), Ir (4)] (cod = 1,5-cyclooctadiene), stabilized by the tribenzylphosphine ligand (PBz3) were synthesized and characterized by elemental analysis and spectroscopic methods. The molecular structures of 1 and 2 were determined by single-crystal X-ray diffraction. The addition of pyridine to a methanol solution of 1or 2, followed by metathetical reaction with NH4PF6, gave the corresponding derivatives [M(py)(PBz3)(cod)]PF6 [M = Rh (5), Ir (6)]. At room temperature in CHCl3 solution, 4 converted spontaneously to the ortho-metallated complex [IrH(PBz3)(cod){η2-P,C-(C6H4CH2)PBz2}]PF6 (7) as a mixture of cis/trans isomers via intramolecular C-H activation of a benzylic phenyl ring. The reaction of 3 or 4 with hydrogen in coordinating solvents gave the dihydrido bis(solvento) derivative [M(H)2(S)2(PBz3)2]PF6 (M = Rh, Ir; S = acetone, acetonitrile, THF), that transformed into the corresponding dicarbonyls [M(H)2(CO)2(PBz3)2]PF6 by treatment with CO. Analogous cis-dihydrido complexes [M(H)2(THF)2(py)(PBz3)2]PF6 (M = Rh, Ir) were observed by reaction of the py derivatives 5 and 6 with H2.  相似文献   

4.
Phosphorous-bridged bisphenoxy titanium complexes were synthesized and their ethylene polymerization behavior was investigated. Bis[3-tert-butyl-5-methyl-2-phenoxy](phenyl)phosphine tetrahydrofuran titanium dichloride (4a) was obtained by treatment of 3 equiv of n-BuLi with bis[3-tert-butyl-2-hydroxy-5-methylphenyl](phenyl)phosphine hydrochloride salt (3a) followed by TiCl4(THF)2 in THF. THF-free complexes 5a-5d were synthesized more conveniently by the direct reaction of MOM-protected ligands (2a-2d) with TiCl4 in toluene. X-ray analysis of 4a revealed that the ligand is bonded to the octahedral titanium (IV) center in a facial fashion and two chlorine atoms possess cis-geometry. Complexes 4a and 5a-5d were utilized as catalyst precursors for ethylene polymerization. Complex 5c gave high molecular weight polyethylene (Mw = 1,170,000, Mw/Mn = 2.0) upon activation with Al(iBu)3/[Ph3C][B(C6F5)4] (TB). Ethylene polymerization activity of 5d activated with Al(iBu)3/TB reached 49.0 × 106 g mol (cat) −1 h−1.  相似文献   

5.
Three new alkali-metal compounds stabilized by aryloxo groups were synthesized and fully characterized. The reactions of carbon-bridged bis(phenol)s MBMPH2 (MBMPH2 = 2,2′-methylene-bis(6-tert-butyl-4-methylphenol)) with sodium and potassium metals in tetrahydrofuran (THF) gave the desired alkali-metal complexes [MBMPNa2(THF)3]2 (1) and [(MBMPK2)2(THF)5]2 (2), respectively, in high isolated yields. A similar reaction of aminophenol [HNOH] ([HNOH] = N-p-methyl-phenyl(2-hydroxy-3,5-di-tert-butyl)benzylamine) with sodium gave the monosodium salt [HNONa(THF)]2 (3). Compounds 1-3 were well characterized, including X-ray structure determination. Compound 1 has a dimeric structure, and each sodium atom is four-coordinated with four oxygen atoms to form a distorted tetrahedron. Compound 2 has a centrosymmetric tetrameric structure. The coordination environments around the four potassium atoms are different. K1 is four-coordinated, K2 is three-coordinated, K3 is five-coordinated, whereas the coordination sphere of K4 is completed by one aryloxo oxygen atom and two oxygen atoms from two THF molecules and six carbon atoms from one arene ring of the bis(phenolate) ligand. Compound 3 has a dimeric structure, and each of the sodium atoms is four-coordinated to form a distorted tetrahedron. It was found that compounds 1-3 can efficiently initiate the ring opening polymerization of l-lactide in the absence of alcohol, yielding polymers with high molecular weights for a wide range of monomer-to-initiator ratios.  相似文献   

6.
Reaction of 3-(2-pyridylmethyl)indenyl lithium (1) with LnI2(THF)2 (Ln = Sm, Yb) in THF produced the divalent organolanthanides (C5H4NCH2C9H6)2LnII(THF) (Ln = Sm (2), Yb (3)) in high yield. 1 reacts with LnCl3 (Ln = Nd, Sm, Yb) in THF to give bis(3-(2-pyridylmethyl)indenyl) lanthanide chlorides (C5H4NCH2C9H6)2LnIIICl (Ln = Nd (4), Sm (5)) and the unexpected divalent lanthanides 3 (Ln = Yb). Complexes 2-5 show more stable in air than the non-functionalized analogues. X-ray structural analyses of 2-4 were performed. 2 and 3 belong to the high symmetrical space group (Cmcm) with the same structures, they are THF-solvated 9-coordinate monomeric in the solid state, while 4 is an unsolvated 9-coordinate monomer with a trans arrangement of both the sidearms and indenyl rings in the solid state. Additionally, 2 and 3 show moderate polymerization activities for ε-caprolactone (CL).  相似文献   

7.
The synthesis of lanthanide hydroxo complexes stabilized by a carbon-bridged bis(phenolate) ligand 2,2’-methylene-bis(6-tert-butyl-4-methylphenoxo) (MBMP2−) was described, and their reactivity toward phenyl isocyanate was explored. Reactions of (MBMP)Ln(C5H5)(THF)2 with a molar equiv. of water in THF at −78 °C afforded the bis(phenolate) lanthanide hydroxides as dimers [{(MBMP)Ln(μ-OH)(THF)2}2] [Ln = Nd (1), Yb (2)] in high yields. Complexes 1 and 2 reacted with phenyl isocyanate in THF, after workup, to give the desired O−H addition products, [(MBMP)Ln(μ-η12-O2CNHPh)(THF)2]2 [Ln = Nd (3), Yb (4)] in excellent isolated yields. These complexes were well characterized, and the molecular structures of complexes 2 to 4 were determined by X-ray crystallography. The ytterbium atom in complex 2 is coordinated to six oxygen atoms to form a distorted octahedral geometry, whereas each metal center in complexes 3 and 4 is seven-coordinated, and the coordination geometry can be best described as a distorted pentagonal bipyramid.  相似文献   

8.
A series of dimeric lanthanide carboxylato complexes [La(5-Br-NIC)3(H2O)2]2·H2O (1); [Gd(5-Br-NIC)3(H2O)2]2 (2), [5-Br-NIC = 5-bromonicotinate] and [Sm(NIC)3(H2O)2]2 (3) [NIC = nicotinate], have been hydrothermally synthesized and structurally characterized by single crystal X-ray analysis. Complexes 1, 2 and 3 are of similar structure and consist of a basic unit [La(carboxylato)3(H2O)2]2. In compound 1 lanthanide cation is surrounded by one chelating 5-bromo-nicotinato ligand, two bridging oxygen atoms from 5-bromo-nicotinato and two water molecules, in which each La(III) ion is nine coordinated in a tricapped prismatic geometry. However, in compounds 2 and 3 four carboxylate groups link a pair of lanthanide atoms in the O,O′-bridging mode to generate a paddle-wheel-like centrosymmetric dimer. All the compounds exhibit excellent catalytic performance in olefin epoxidation reaction. The variable temperature magnetic susceptibility measurements showed that the magnetic interaction in [Gd(5-Br-NIC)3(H2O)2]2 (2), is antiferromagnetic (J = −0.048 cm−1), while compound [Sm(NIC)3(H2O)2]2 (3), showed a complicated low-temperature magnetic property.  相似文献   

9.
New palladium(II) and platinum(II) complexes of saccharinate (sac), trans-[Pd(py)2(sac)2] (1), cis-[Pt(py)2(sac)2] (2), trans-[Pd(3-acpy)2(sac)2] (3) and cis-[Pt(3-acpy)2(sac)2] (4) (py = pyridine and 3-acpy = 3-acetylpyridine) have been synthesized. Elemental analysis, UV-Vis, IR, NMR and TG/DTA characterizations have been carried out. The structures of 1-4 were determined by X-ray diffraction. The palladium(II) and platinum(II) ions are coordinated by two N-bonded sac ligands, and two nitrogen atoms of py or 3-acpy, forming a distorted square-planar geometry. The palladium(II) complexes (1 and 3) are trans isomers, while the platinum(II) complexes (2 and 4) are cis isomers. The mononuclear species in the solid state are connected by weak intermolecular C-H?O hydrogen bonds, C-H?π and π?π stacking interactions. The platinum(II) complexes show significant fluorescence at the room temperature.  相似文献   

10.
Compound [Fe2(μ-CO)2(CO)25-C9H7)2] (1) reacts with aryllithium reagents, ArLi (Ar = C6H5, p-CH3C6H4, p-CF3C6H4) followed by alkylation with Et3OBF4 to give the diindenyl-coordinated diiron bridging alkoxycarbene complexes [Fe2{μ-C(OC2H5)Ar}(μ-CO)(CO)25-C9H7)2] (2, Ar = C6H5; 3, Ar = p-CH3C6H4, 4, Ar = p-CF3C6H4). Complex 4 reacts with HBF4 · Et2O at low temperature to yield cationic bridging carbyne complex [Fe2(μ-CC6H4CF3-p)(μ-CO)(CO)25-C9H7)2]BF4 (5). Cationic 5 reacts with NaBH4 in THF at low temperature to afford diiron bridging arylcarbene complex [Fe2{μ-C(H)C6H4CF3-p}(μ-CO)(CO)25-C9H7)2] (6). The reaction of 5 with NaSC6H4CH3-p under the similar conditions gave the bridging arylthiocarbene complex [Fe2{μ-C(C6H4CF3-p)SC6H4CH3-p}(μ-CO)(CO)25-C9H7)2] (7). Complex 5 can also react with carbonylmetal anionic compounds Na[M(CO)5(CN)] (M = Cr, Mo, W) to produce the diiron bridging aryl(penta-carbonylcyanometal)carbene complexes [Fe2{μ-C(C6H4CF3-p)NCM(CO)5}(μ-CO)(CO)25-C9H7)2] (8, M = Cr; 9, M = Mo; 10, M = W). The structures of complexes 4, 6, 7, and 10 have been established by X-ray diffraction studies.  相似文献   

11.
Reaction of (CH3C5H4)2LnCl(THF) with NaNHAr in a 1:1 molar ratio in THF afforded the amide complexes (CH3C5H4)2LnNHAr(THF) [(Ar = 2,6-Me2C6H3, Ln = Yb (I), Y (III); Ar = 2,6-iPr2C6H3, Ln = Yb (II)]. X-ray crystal structure determination revealed that complexes I-III are isostructural. The central metal in each complex coordinated to two methylcyclopentadienyl groups, one amide group and one oxygen atom from THF to form a distorted tetrahedron. Complexes I-III and a known complex (CH3C5H4)2YbNiPr2(THF) IV all can serve as the catalysts for addition of amines to nitriles to monosubstituted N-arylamidines. The activity depended on the central metals and amide groups, and the active sequence follows the trend IV ≈ III < I < II.  相似文献   

12.
A family of tantalum compounds supported by the triaryloxide [R-L]3− ligands are reported [H3(R-L) = 2,6-bis(4-methyl-6-R-salicyl)-4-tert-butylphenol, where R = Me or tBu]. The reaction of H3[Me-L] with TaCl5 in toluene gave [(Me-L)TaCl2]2 (1). The [tBu-L] analogue [(tBu-L)TaCl2]2 (2) was synthesized via treatment of TaCl5 with Li3[tBu-L]. A THF solution of LiBHEt3 was added to 1 in toluene to provide [(Me-L)TaCl(THF)]2 (3), while treatment of 2 with 2 equiv of LiBHEt3 or potassium in toluene followed by recrystallization from DME resulted in formation of [M(DME)3][{(tBu-L)TaCl}2(μ-Cl)] [M = Li (4a), K (4b)]. When the amount of MBHEt3 (M = Li, Na, K) was increased to 5 equiv, the analogous reactions in toluene afforded [{(bit-tBu-L)Ta}2(μ-H)3M] [M = Li(THF)2 (5a), Na(DME)2 (5b), K(DME)2 (5c)]. During the course of the reaction, the methylene CH activation of the ligand took place. Dissolution of 5a in DME produced [{(bit-tBu-L)Ta}2(μ-H)3Li(DME)2] (6), indicating that the coordinated THF molecules are labile. When the 2/LiBHEt3 reaction was carried out in THF, the ring opening of THF occurred to yield [(tBu-L)Ta(OBun)2]2 (7) along with a trace amount of [Li(THF)4][{(tBu-L)TaCl}2(μ-OBun)] (8). Treatment of 2 with potassium hydride in DME yielded [{(tBu-L)TaCl2K(DME)2}2(μ-OCH2CH2O)] (9), in which the ethane-1,2-diolate ligand arose from partial C-O bond rupture of DME. The X-ray crystal structures of 2, 3, 4, 5a, 6, 7, and 9 are described.  相似文献   

13.
Four complexes: [Bu2(L1)SnOSn(L1)Bu2]2 (1), [Bu2(L2)SnOSn(L2)Bu2]2 (2), [Bu2(L3)SnOSn(L3)Bu2]2 (3), and [Bu2(L4)SnOSn(L4)Bu2]2 (4), (HL1 = 2-(4-methylbenzoyl)benzoic acid, HL2 = 2-(2,4-diethylbenzoyl)benzoic acid, HL3 = 2-(4-chlorobenzoyl)benzoic acid, HL4 = 2-(4-isopropylbenzoyl)benzoic acid) have been prepared and structurally characterized by means of elemental analysis and vibrational, 1H NMR and FT-IR spectroscopies. The crystal structures of all complexes have been determined by X-ray crystallography. Three distannoxane rings are present to the dimeric tetraorganodistannoxane of planar ladder arrangement. Each structure is centro-symmetric and features a central rhombus Sn2O2 unit with two additional tin atoms linked at the O atoms. Complex 1 exhibited good antibacterial and antitumor activities and have a potential to be used as drugs.  相似文献   

14.
The tetraphosphine DPPEPM reacts with [PtMe2(cod)] to produce [PtMe2(DPPEPM-PP)] (1) in near quantitative yield. On standing in solution, the free P atoms become oxidized to give [PtMe2(DPPEPM(O)2-PP)] (1a), which has been characterized by X-ray crystallography. In contrast, reactions of DPPEPM with [MCl2(cod)] (M = Pd, Pt) yield ionic products of the form [M(DPPEPM-PP)2]MCl4 (3, 4). When a solution of the platinum complex was allowed to stand, crystals of [Pt(μ-Cl)(μ-DPPEPM)2]Cl3 (5) were obtained. In a third set of reactions, treatment of [PtClR(cod)] (R = Me, Ph) or [PdClMe(cod)] with DPPEPM gives species of the type [MR(DPPEPM-PPP)]Cl (6-8), in which one of the internal P atoms is uncoordinated. Reactions of [PtR2(DPPEPM-PP)] with or [MCl2(cod)] (M = Pd, Pt), or of [PtR(DPPEPM-PPP)]Cl with [MCl2(cod)], lead to unsymmetrical bimetallic complexes. [PtMe2(μ-DPPEPM)PdCl2] (11) and [PtClPh(μ-DPPEPM)PdCl2] (14) have been characterized crystallographically. Trimetallic complexes of the form [{PtR2(μ-DPPEPM)}2M][MCl4] (M = Pd, Pt, 15-17) are produced by reaction of [PtR2(DPPEPM-PP)] with [MCl2(cod)].  相似文献   

15.
Thirteen novel 3d-4f heteronuclear coordination polymers based on the pyridine-2,6-dicarboxylic acid (H2pda) and imidazole ligands, HIm[(pda)3MLn(Im)2(H2O)2]·3H2O (Im = imidazole; M = Co, Ln = Pr (1), Gd (2), Dy (3), Er (4); M = Mn, Ln = Pr (5), Sm (6), Gd (7), Dy (8), Er (9)), HIm[(pda)3CoSm(Im)2(H2O)2]·2H2O (10), [(Im)4M(H2O)2][(pda)4La2(H2O)2]·2H2O (M = Co (11), Mn (12)), and [(pda)6Co3Pr2(H2O)6]·6H2O (13), have been prepared and structurally characterized. X-ray crystallographic analyses revealed that these complexes display four different types of structures. Complexes 1-9 are isostructural, and possess 1-D chain structures constructed by alternately arrayed nine-coordinated Ln(III) (Ln = Pr, Sm, Gd, Dy, Er) and six-coordinated M(II) (M = Mn, Co) ions. Complex 10 exhibits a unique one-dimensional structure, in which two independent chains are parallel viewed down the a-axis and anti-parallel viewed down the c-axis. Complexes 11 and 12 are isostructural and display 1-D homometallic chain structures. Complex 13 is a 3D framework fabricated through PrN3O6 and CoO6 polyhedrons as building blocks. The variable-temperature solid-state dc magnetic susceptibilities of complexes 2, 3, 4, 9 and 13 have been investigated. Antiferromagnetic exchange interactions were determined for these five complexes.  相似文献   

16.
The dinuclear ruthenium complexes [Ru2(μ-sac)2(CO)6] (1), [Ru2(μ-sac)2(CH3CN)2(CO)4] (3), [Ru2(μ-sac)2(CO)5(PPh3)] (4) and [Ru2(μ-sac)2(CO)4(PPh3)2] (5) as well as the tetranuclear ruthenium complex [Ru2(μ-sac)2(CO)5]2 (2) (sac = saccharinate, C7H4NO3S) were synthesized starting from Ru3(CO)12 and saccharin. X-ray crystal structure analysis of 1, 3A × p-xylene, 4 × CH2Cl2 and 5 × 3CH2Cl2 showed that the core is bridged through the amidate moieties of the two saccharinate ligands, with a head-tail arrangement in complexes 1, 3A and 5, and a head-head arrangement in 4. For complex 3, an equilibrium mixture of the head-head regioisomer 3A and a second species 3b exists in solution. Complexes 1 and 2 are suitable catalysts for the cyclopropanation of nucleophilic alkenes (styrene, cyclohexene and 2-methyl-2-butene) with methyl diazoacetate.  相似文献   

17.
Interaction of copper(II) salts with 2,2′-dipyridylamine (1), N-cyclohexylmethyl-2,2′-dipyridylamine (2), di-2-pyridylaminomethylbenzene (3), 1,2-bis(di-2-pyridylaminomethyl)-benzene (4), 1,3-bis(di-2-pyridylaminomethyl)benzene (5), 1,4-bis(di-2-pyridylaminomethyl)benzene (6), 1,3,5-tris(di-2-pyridylaminomethyl)benzene (7) and 1,2,4,5-tetrakis(di-2-pyridylaminomethyl)benzene (8) has yielded the following complexes: [Cu(2)(μ-Cl)Cl]2, [Cu(3)(μ-Cl)Cl]2 · H2O, [Cu2(4)(NO3)4], [Cu2(5)(NO3)4] · 2CH3OH, [Cu2(6)(CH3OH)2(NO3)4], [Cu4(8)](NO3)4] · 4H2O while complexation of palladium(II) with 1, 4, 5 and 6 gave [Pd(1)2](PF6)2 · 2CH3OH, [Pd2(4)Cl4], [Pd2(4)(OAc)4], [Pd2(5)Cl4], [Pd2(6)Cl4] and [Pd2(6)(OAc)4] · CH2Cl2, respectively. X-ray structures of [Cu(2)(μ-Cl)Cl]2, [Cu(3)(μ-Cl)Cl]2 · 2C2H5OH, [Cu2(6)(CH3OH)2(NO3)4], [Pd(1)2](PF6)2 · 2CH3OH, [Pd2(4)(OAc)4] · 4H2O and [Pd2(6)(OAc)4] · 2CH2Cl2 are reported. In part, the inherent flexibility of the respective ligands has resulted in the adoption of a diverse range of coordination geometries and lattice arrangements, with the structures of [Pd2(4)(OAc)4· 4H2O and [Pd2(6)(OAc)4] · 2CH2Cl2, incorporating the isomeric ligands 4 and 6, showing some common features. Liquid–liquid (H2O/CHCl3) extraction experiments involving copper(II) and 13, 5, 7and 8 show that the degree of extraction depends markedly on the number of dpa-subunits (and concomitant lipophilicity) of the ligand employed with the tetrakis-dpa derivative 8 acting as the most efficient extractant of the six ligand systems investigated.  相似文献   

18.
The reaction of acetonitrile (15) and mixed acetonitrile/water 1:1 (69) solutions containing the cyanide-bearing [Fe(bipy)(CN)4] building block (bipy = 2,2′-bipyridine) and the partially blocked [Ln(bpym)]3+ cation (Ln = lanthanide trivalent cation and bpym = 2,2′-bipyrimidine) has afforded two new families of 3d–4f supramolecular assemblies of formula [Ln(bpym)(NO3)2(H2O)3][Fe(bipy)(CN)4] · H2O · CH3CN [Ln = Sm (1), Gd (2), Tb (3), Dy (4) and Ho (5)] and [Ln(bpym)(NO3)2(H2O)4][Fe(bipy)(CN)4] [Ln = Pr (6), Nd (7), Sm (8), Gd (9)]. They crystallize in the P21/c (15) and P2/c (69) space groups and their structures are made up of [Fe(bipy)(CN)4] anions (19) and [Ln(bpym)(NO3)2(H2O)n]+ cations [n = 3 (15) and 4 (69)] with uncoordinated water and acetonitrile molecules (15) which are interlinked through an extensive network of hydrogen bonds and π–π stacking into three-dimensional motifs. Both families have in common the occurrence of the low-spin iron(III) unit [Fe(bipy)(CN)4] where two bipy–nitrogen and four cyanide–carbon atoms build a somewhat distorted octahedral surrounding around the iron atom [Fe–N = 1.980(3)–1.988(3) Å (15) and 1.988(2)–1.992(2) Å (69); Fe–C = 1.904(5)–1.952(4) Å (15) and 1.911(2)–1.948(3) Å (69)]. The main structural difference between both families concerns the environment of the lanthanide atom which is nine- (15)/10-coordinated (69) with a chelating bpym, two bidentate nitrate and three (15)/four (69) water molecules building distorted monocapped (15)/bicapped (69) square antiprisms. This different lanthanide environment is at the origin of the different hydrogen bonding pattern of the two families of compounds.  相似文献   

19.
Reactions of 0.5 eq. of the dinuclear complexes [(η6-arene)Ru(μ-Cl)Cl]2 (arene = η6-C6H6, η6-p-iPrC6H4Me) and [(Cp∗)M(μ-Cl)Cl]2 (M = Rh, Ir; Cp∗ = η5-C5Me5) with 4,6-disubstituted pyrazolyl-pyrimidine ligands (L) viz. 4,6-bis(pyrazolyl)pyrimidine (L1), 4,6-bis(3-methyl-pyrazolyl)pyrimidine (L2), 4,6-bis(3,5-dimethyl-pyrazolyl)pyrimidine (L3) lead to the formation of the cationic mononuclear complexes [(η6-C6H6)Ru(L)Cl]+ (L = L1, 1; L2, 2; L3, 3), [(η6-p-iPrC6H4Me)Ru(L)Cl]+ (L = L1, 4; L2, 5; L3, 6), [(Cp∗)Rh(L)Cl]+ (L = L1, 7; L2, 8; L3, 9) and [(Cp∗)Ir(L)Cl]+ (L = L1, 10; L2, 11; L3, 12), while reactions with 1.0 eq. of the dinuclear complexes [(η6-arene)Ru(μ-Cl)Cl]2 and [(Cp∗)M(μ-Cl)Cl]2 give rise to the dicationic dinuclear complexes [{(η6-C6H6)RuCl}2(L)]2+ (L = L1, 13; L2, 14; L3, 15), [{(η6-p-iPrC6H4Me)RuCl}2(L)]2+ (L = L1, 16; L2, 17; L3, 18), [{(Cp∗)RhCl}2(L)]2+ (L = L1, 19; L2, 20; L3, 21) and [{(Cp∗)IrCl}2(L)]2+ (L = L1 22; L2, 23; L3 24). The molecular structures of [3]PF6, [6]PF6, [7]PF6 and [18](PF6)2 have been established by single crystal X-ray structure analysis.  相似文献   

20.
A variety of monocyclopentadienyl alkoxo titanium dichloride and bisalkoxo titanium dichloride complexes have been prepared and characterized by spectroscopic techniques. The titanium derivatives containing both cyclopentadienyl and various alkoxo ligands [Ti(η5-C5H5)(OR)Cl2] (1-5) have been synthesized from the reaction of [Ti(η5-C5H5)Cl3] with 1 equivalent of the corresponding alcohol in THF in the presence of triethylamine (ROH = Adamantanol, 1R,2S,5R-(−)-menthol, 1S-endo-(−)-borneol, cis-1,3-(−)-benzylideneglycerol, 1,2:3,4-di-O-isopropylidene-α-d-galactopyranose). The bisalkoxo titanium dichloride derivatives [TiCl2(OR)2] (6-10) have been prepared by a redistribution reaction between Ti(OR)4 and TiCl4 compounds 6-8 (OR = Adamantanoxy, (1R,2S,5R)-(−)menthoxy, (1S-endo)-(−)-borneoxy) and by reaction of [Ti(OR)2(OPri)2]2 with CH3COCl compounds 9 and 10 (OR = 1,2:3,4-di-O-isopropylidene-α-d-galactopyranoxy, and 1,2:5,6-di-O-isopropylidene-α-d-glucofuranoxy). The molecular structures of 2 and 3 have been determined by single crystal X-ray diffraction studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号