首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The salts [S(NMe2)3][MF6] (M = Nb, 2a; M = Ta, 2b) and [S(NMe2)3][M2F11] (M = Nb, 2c; M = Ta, 2d) have been prepared by reacting MF5 (M = Nb, 1a; M = Ta, 1b) with [S(NMe2)3][SiMe3F2] (TASF reagent) in the appropriate molar ratio. The solid state structure of 2b has been ascertained by X-ray diffraction. The 1:1 molar ratio reactions of 1a with a variety of organic compounds (L) give the neutral adducts NbF5L [L = Me2CO, 3a; L = MeCHO, 3b; L = Ph2CO, 3c; L = tetrahydrofuran (thf), 3d; L = MeOH, 3e; L = EtOH, 3f; L = HOCH2CH2OMe, 3g; L = Ph3PO, 3h; L = NCMe, 3i] in good yields. The complexes MF5L [M = Nb, L = HCONMe2, 3j; M = Nb, L = (NMe2)2CO, 3k; M = Ta, L = (NMe2)2CO, 3l; M = Nb, L = OC(Me)CHCMe2, 3m] have been detected in solution in admixture with other unidentified products, upon 2:1 molar reaction of 1 with the appropriate reagent L. The ionic complexes [NbF4(tht)2][NbF6], 4a, and [NbF4(tht)2][Nb2F11], 4b, have been obtained by combination of tetrahydrothiophene (tht) and 1a, in 1:1 and 2:3 molar ratios, respectively. The treatment of 1 with a two-fold excess of L leads to the species [MF4L4][MF6] [M = Nb, L = HCONMe2, 5a; M = Ta, L = HCONMe2, 5b; M = Nb, L = thf, 5c; M = Ta, L = thf, 5d; M = Nb, L = OEt2, 5e]. The new complexes have been fully characterised by NMR spectroscopy. Moreover, the revised 19F NMR features of the known compounds MF5L [M = Ta, L = Me2CO, 3n; M = Ta, L = Ph2CO, 3o; M = Ta, L = MePhCO, 3p; M = Ta, L = thf, 3q; M = Nb, L = CH3CO2H, 3r; M = Nb, L = CH2ClCO2H, 3s; M = Ta, L = CH2ClCO2H, 3t], TaF4(acac), TaF4(Me-acac) and [TaF(Me-acac)3][TaF6] (Me-acac = methylacetylacetonato anion) are reported.  相似文献   

2.
Five new compounds formulated as [NiII(dca)2(para-ABN)2(H2O)2] (1), [CuII(dca)2(para-ABN)2(H2O)2] (2), [CuII(dca)2(para-ABN)2]n, (3), [CuII(dca)2(ortho-ABN)2]n, (4) and [CdII(dca)2(meta-ABN)2]n (5), where dca = dicyanamide and ABN = aminobenzonitrile, have been synthesized and characterized by single crystal X-ray diffraction studies and low temperature (300–2 K) magnetic measurements. The structural analyses revealed that 1 and 2 are isomorphous where dca and para-ABN both act as monodentate ligands. 3 consists of infinite double stranded chains of Cu(II) ions connected through the para-ABN bridges whereas 4 and 5 consist of infinite double stranded chains of Cu(II) and Cd(II) respectively, connected through μ1,5-dca bridges. The compounds extend their geometries to three-dimensional for 13 and 5 and two-dimensional for 4 through hydrogen bonding interactions. All the metal ions Ni2+, Cu2+ and Cd2+ are located on inversion centres and have distorted octahedral coordination geometries. The variable temperature magnetic susceptibility measurements show that the global feature of the χMT versus T curves for 3 and 4 is characteristic of very weak antiferromagnetic interactions and between 300 and 2 K the best fit parameters were determined as J = −2.35 and −5.1 cm−1, respectively.  相似文献   

3.
The reaction of Ni(OAc)2, NiX2 (X = Cl, Br) or CoCl2 with the proligand 2-amino-2-methyl-1,3-propanediol (ampdH2) affords a new family of tetranuclear complexes. The syntheses of [Ni4(OAc)4(ampdH)4] (1) and [M4X4(ampdH)4] (M = Ni, X = Cl, 2; M = Ni, X = Br, 3; M = Co, X = Cl, 4) are reported, together with the single crystal X-ray structures of 1, 2 and 4 and the magnetochemical characterization of 1, 3 and 4. Each member of this family of complexes displays a low symmetry structure that incorporates a {M4O4} core unit based on a distorted cubane. Magnetic measurements reveal ferromagnetic exchange interactions for 1, 3 and 4. These give rise to S = 4 ground state spins for the tetranuclear Ni complexes and an anisotropic effective S′ = 2 ground state for the Co complex.  相似文献   

4.
Two neutral nickel(II) coordination polymers [Ni(en)(dca)2]n (1) and [Ni(dmen)(dca)2]n (2) (en = ethylenediamine; dmen = N,N-dimethylethylenediamine; dca = dicyanamide) have been synthesized and X-ray crystallographically characterized. Each nickel(II) center in 1/2 adopts a distorted octahedral coordination environment with a NiN6 chromophore ligated by two amine N atoms of the bidentate amine (en/dmen) and four nitrile N atoms of μ1,5 bridged dca. The metal(II) centers are connected with each other through single μ1,5 M–NCNCN–M bridges, resulting in a 2D layer structure with a (4,4) topology in 1 and a 3D network of topology (6,6) in 2. Multiple lateral N–H···N and C–H···N hydrogen bondings promote dimensionality. The magnetic susceptibility results of 1 and 2 at very low temperature support the zero-field splitting effect of the nickel(II) ions.  相似文献   

5.
Treatment of [Cp′MH(CO)3] (M = Mo, W; Cp′ = η5-C5H5 (Cp), η5-C5Me5 (Cp*)) with 1/8 equiv of S8 in THF, followed by the reaction with dppe under UV irradiation, gave new mono(hydrosulfido) complexes [Cp′M(SH)(CO)(dppe)] (Cp′ = Cp: M = Mo (5), W (6); Cp′ = Cp*: M = Mo (7), W (8); dppe = Ph2PCH2CH2PPh2). When 5 and 6 dissolved in THF were allowed to react with [RhCl(PPh3)3] in the presence of base, heterodinuclear complexes with bridging S and dppe ligands [CpM(CO)(μ-S)(μ-dppe)Rh(PPh3)] (M = Mo (9), W(10)) were obtained. Semi-bridging feature of the CO ligands were also demonstrated. Upon standing in CH2Cl2 solutions, 9 and 10 were converted further to the dimerization products [(CpM)2{Rh(dppe)}22-CO)23-S)2] (M = Mo (13), W). Detailed structures of mononuclear 7 and 8, dinuclear 9 and tetranuclear 13 have been determined by the X-ray diffraction.  相似文献   

6.
Mononuclear complexes of the type, M(CO)4[Se2P(OR)2] (M = Mn, R = iPr, 1a; Et, 1b; M = Re, R = iPr, 3a; Et, 3b) can be prepared from either [-Se(Se)P(OiPr)2]2 (A) or [Se{-Se(Se)P(OEt)2}2] (B) with M(CO)5Br. O,O′-dialkyl diselenophosphate ([(RO)2PSe2]-, abbreviated as dsep) ligands generated from A and B act as a chelating ligand in these complexes. Upon refluxing in acetonitrile, these mononuclear complexes yield dinuclear complexes with a general formula of [M2(CO)6{Se2P(OR)2}2] (M = Mn, R = iPr, 2a; Et, 2b; M = Re, R = iPr, 4a; Et, 4b). Dsep ligands display a triconnective, bimetallic bonding mode in the dinuclear compounds and this kind of connective pattern has never been identified in any phosphor-1,1-diselenoato metal complexes. Compounds 2b, 3b, and 4 are structurally characterized. Compounds 2b and 3b display weak, secondary Se?Se interactions in their lattices.  相似文献   

7.
The formation, crystal structure and properties of five copper(II) coordination compounds with the angular ligand, 4,4′-dipyridyl sulfide (dps) are described, {[Cu3(μ-dps)4(μ-SO4)2(SO4)(H2O)5] · 10H2O} (1 · 10H2O), [Cu(dps)4(H2O)2] · (ClO4)2 · H2O (2 · H2O), {[Cu(μ-dps)2(DMF)2](ClO4)2} (3), {[Cu(μ-dps)2(H2O)2] · (NO3)2 · 2H2O} (4 · 2H2O) and {[Cu3(μ-dps)6(DMF)2(H2O)4] · (NO3)6 · (DMF) · 6H2O} (5 · DMF · 6H2O). The topological architectures of all these coordination compounds are strongly dependent on the counteranions, with the aid of guest solvents, and include a chiral 3D non-interpenetrated structure for 1, an acentric mononuclear structure for 2, acentric 2D undulating networks for 3 and 5, and a chiral 1D double-stranded chain for 4. In particular, all these acentric or chiral coordination architectures are generated from an achiral ligand as a building unit, and their second-order non-linear optical (NLO) properties are also studied in this paper.  相似文献   

8.
An efficient route to the novel tridentate phosphine ligands RP[CH2CH2CH2P(OR′)2]2 (I: R = Ph; R′ = i-Pr; II: R = Cy; R′ = i-Pr; III: R = Ph; R′ = Me and IV: R = Cy; R′ = Me) has been developed. The corresponding ruthenium and iron dicarbonyl complexes M(triphos)(CO)2 (1: M = Ru; triphos = I; 2: M = Ru; triphos = II; 3: M = Ru; triphos = III; 4: M = Ru; triphos = IV; 5: M = Fe; triphos = I; 6: M = Fe; triphos = II; 7: M = Fe; triphos = III and 8: M = Fe; triphos = IV) have been prepared and fully characterized. The structures of 1, 3 and 5 have been established by X-ray diffraction studies. The oxidative addition of MeI to 1-8 produces a mixture of the corresponding isomeric octahedral cationic complexes mer,trans-(13a-20a) and mer,cis-[M(Me)(triphos)(CO)2]I (13b-20b) (M = Ru, Fe; triphos = I-IV). The structures of 13a and 20a (as the tetraphenylborate salt (21)) have been verified by X-ray diffraction studies. The oxidative addition of other alkyl iodides (EtI, i-PrI and n-PrI) to 1-8 did not afford the corresponding alkyl metal complexes and rather the cationic octahedral iodo complexes mer,cis-[M(I)(triphos)(CO)2]I (22-29) (M = Ru, Fe; triphos = I-IV) were produced. Complexes 22-29 could also be obtained by the addition of a stoichiometric amount of I2 to 1-8. The structure of 22 has been verified by an X-ray diffraction study. Reaction of 13a/b-20a/b with CO afforded the acetyl complexes mer,trans-[M(COMe)(triphos)(CO)2]I, 30-37, respectively (M = Ru, Fe; triphos = I-IV). The ruthenium acetyl complexes 30-33 reacted slowly with 2-tert-butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphosphorine (BEMP) even in boiling acetonitrile. Under the same conditions, the deprotonation reactions of the iron acetyl complexes 34-37 were completed within 24-40 h to afford the corresponding zero valent complexes 5-8. It was not possible to observe the intermediate ketene complexes. Tracing of the released ketene was attempted by deprotonation studies on the labelled species mer,trans-[Fe(COCD3)(triphos)(CO)2]I (38) and mer,trans-[Fe(13COMe)(triphos)(CO)2]I (39).  相似文献   

9.
New rhodium and iridium complexes, with the formula [MCl(PBz3)(cod)] [M = Rh (1), Ir (2)] and [M(PBz3)2(cod)]PF6 [M = Rh (3), Ir (4)] (cod = 1,5-cyclooctadiene), stabilized by the tribenzylphosphine ligand (PBz3) were synthesized and characterized by elemental analysis and spectroscopic methods. The molecular structures of 1 and 2 were determined by single-crystal X-ray diffraction. The addition of pyridine to a methanol solution of 1or 2, followed by metathetical reaction with NH4PF6, gave the corresponding derivatives [M(py)(PBz3)(cod)]PF6 [M = Rh (5), Ir (6)]. At room temperature in CHCl3 solution, 4 converted spontaneously to the ortho-metallated complex [IrH(PBz3)(cod){η2-P,C-(C6H4CH2)PBz2}]PF6 (7) as a mixture of cis/trans isomers via intramolecular C-H activation of a benzylic phenyl ring. The reaction of 3 or 4 with hydrogen in coordinating solvents gave the dihydrido bis(solvento) derivative [M(H)2(S)2(PBz3)2]PF6 (M = Rh, Ir; S = acetone, acetonitrile, THF), that transformed into the corresponding dicarbonyls [M(H)2(CO)2(PBz3)2]PF6 by treatment with CO. Analogous cis-dihydrido complexes [M(H)2(THF)2(py)(PBz3)2]PF6 (M = Rh, Ir) were observed by reaction of the py derivatives 5 and 6 with H2.  相似文献   

10.
Niobium and tantalum pentahalides, MX5 (1), react with acetic acid and halo-substituted acetic acids, in 1:1 ratio, to give the dinuclear complexes [MX4(μ-OOCMe)]2 [M = Nb, X = Cl, 2a; M = Ta, X = Cl, 2b; Br, 2c] and [MCl4(μ-OOCR)]2 [M = Nb, R = CH2Cl, 4a; CHCl2, 4c; CCl3, 4e; CF3, 4g; CHBr2, 4i; CH2I, 4j; M = Ta, R = CH2Cl, 4b; CHCl2, 4d; CCl3, 4f; CF3, 4h]. The solid state structures of 2b and 4e have been ascertained by X-ray diffraction studies. The reactions of 1 with acetic anhydride and halo-substituted acetic anhydrides result in C–O bond activation and afford 2 and 4, respectively, with concomitant formation of acetyl halides. Moreover, the complexes MCl5[OC(Cl)Me] [M = Nb, 3a; M = Ta, 3b] have been detected in significant amounts within the mixtures of the reactions of MCl5 with acetic anhydride. TaI5 is unreactive, at room temperature, towards both MeCOOH and (MeCO)2O. MF5 react with RCOOH (R = Me, CH2Cl) in 1:1 molar ratio, to afford the ionic compounds [MF4(RCOOH)2][MF6], 5ad, in high yields. The additions of (RCO)2O (R = Me, CH2Cl) to MF5 give 5, suggesting that anhydride C–H and C–O bonds activation is operative during the course of these reactions.  相似文献   

11.
Alternative methods for the synthesis of the following acyclic salts (CH2CHCHCHS)M [M = K, 1(K); Na, 1(Na); Li, 1(Li)], (CH2CHCHCHSO)M [M = K, 2(K); Na, 2(Na)], (CH2CHCHCHSO2)M [M = K, 3(K); Na, 3(Na); Li, 3(Li)], (CH(Me)CHC(Me)CHSO2)M [Me5-syn, M = K, 9(K); Na, 9(Na); Li, 9(Li), (CH(Me)CHCHC(Me)S)M [Me5-syn, M = K, 10(K); Na, 10(Na); Me5-anti, M = K, 11(K); Na, 11(Na)] are described, as a result of the activation of C-S bond in dihydrothiophenes by deprotonation with different bases. The effect of methyl substituents in the dihydrothiophenes is significant, which modifies considerably the choice of the base. The influence of the reaction conditions, type of solvent, base and dihydrothiophenes is analyzed. The NMR spectroscopy, including NOESY, ROESY and difference NOE establish the preferred U conformation for all derivatives, and support a delocalization of charge on the thiapentadienyl (1M) and sulfinylpentadienyl (2M) complexes. However, a conjugated diene structure is proposed on the butadienesulfonyl compounds (3M), in which the negative charge is delocalized in the SO2 fragment and stabilized with the corresponding cations (M = K, Na and Li). In presence of traces of base, compounds 3M suffer a rearrangement, to the most stable S conformer, 13M. The stability of 3M depends on the size of the cation, the greater the size, the greater stability. Furthermore, a theoretical study shows that electronic and geometrical properties (energy conformers, charge distributions and relative stabilities) of the thiapentadienyl, sulfinylpentadienyl and butadienesulfonyl anions and their corresponding metal salts 1M-3M (M = Li, Na and K) shows to be in good agreement with the experimental findings.  相似文献   

12.
Thirteen novel 3d-4f heteronuclear coordination polymers based on the pyridine-2,6-dicarboxylic acid (H2pda) and imidazole ligands, HIm[(pda)3MLn(Im)2(H2O)2]·3H2O (Im = imidazole; M = Co, Ln = Pr (1), Gd (2), Dy (3), Er (4); M = Mn, Ln = Pr (5), Sm (6), Gd (7), Dy (8), Er (9)), HIm[(pda)3CoSm(Im)2(H2O)2]·2H2O (10), [(Im)4M(H2O)2][(pda)4La2(H2O)2]·2H2O (M = Co (11), Mn (12)), and [(pda)6Co3Pr2(H2O)6]·6H2O (13), have been prepared and structurally characterized. X-ray crystallographic analyses revealed that these complexes display four different types of structures. Complexes 1-9 are isostructural, and possess 1-D chain structures constructed by alternately arrayed nine-coordinated Ln(III) (Ln = Pr, Sm, Gd, Dy, Er) and six-coordinated M(II) (M = Mn, Co) ions. Complex 10 exhibits a unique one-dimensional structure, in which two independent chains are parallel viewed down the a-axis and anti-parallel viewed down the c-axis. Complexes 11 and 12 are isostructural and display 1-D homometallic chain structures. Complex 13 is a 3D framework fabricated through PrN3O6 and CoO6 polyhedrons as building blocks. The variable-temperature solid-state dc magnetic susceptibilities of complexes 2, 3, 4, 9 and 13 have been investigated. Antiferromagnetic exchange interactions were determined for these five complexes.  相似文献   

13.
The tetraphosphine DPPEPM reacts with [PtMe2(cod)] to produce [PtMe2(DPPEPM-PP)] (1) in near quantitative yield. On standing in solution, the free P atoms become oxidized to give [PtMe2(DPPEPM(O)2-PP)] (1a), which has been characterized by X-ray crystallography. In contrast, reactions of DPPEPM with [MCl2(cod)] (M = Pd, Pt) yield ionic products of the form [M(DPPEPM-PP)2]MCl4 (3, 4). When a solution of the platinum complex was allowed to stand, crystals of [Pt(μ-Cl)(μ-DPPEPM)2]Cl3 (5) were obtained. In a third set of reactions, treatment of [PtClR(cod)] (R = Me, Ph) or [PdClMe(cod)] with DPPEPM gives species of the type [MR(DPPEPM-PPP)]Cl (6-8), in which one of the internal P atoms is uncoordinated. Reactions of [PtR2(DPPEPM-PP)] with or [MCl2(cod)] (M = Pd, Pt), or of [PtR(DPPEPM-PPP)]Cl with [MCl2(cod)], lead to unsymmetrical bimetallic complexes. [PtMe2(μ-DPPEPM)PdCl2] (11) and [PtClPh(μ-DPPEPM)PdCl2] (14) have been characterized crystallographically. Trimetallic complexes of the form [{PtR2(μ-DPPEPM)}2M][MCl4] (M = Pd, Pt, 15-17) are produced by reaction of [PtR2(DPPEPM-PP)] with [MCl2(cod)].  相似文献   

14.
Four new coordination polymers were obtained by employing polycarboxylato spacers and cationic copper(II) complexes as nodes: 2[Cu3(trim)2(NH3)6(H2O)3] (1); 1[Cu(tmen)(dhtp)] (2), 1[Cu(tmen)(hitp)(H2O)] (3), 1[Cu(tmen)(nitp)] (4). (H3trim = trimesic acid, H2dhtp = 2,5-dihydroxy-terephthalic acid; H2hitp = 5-hydroxy-isophthalic acid, H2nitp = 5-nitro-isophthalic acid; tmen = N,N,N′,N′-tetramethyl-ethylenediamine). The crystal structures of the four compounds have been solved. Compound 1 consists of 2D coordination polymers with heart-shaped meshes, while compounds 24 contain infinite zigzag chains. The role of the hydrogen bond interactions in sustaining the supramolecular solid-state architectures in compounds 1 and 3 is discussed. The cryomagnetic investigation of compounds 1, 2, and 4 reveals antiferromagnetic interactions between the copper ions.  相似文献   

15.
Complexes [MHCpBz(CO)2(PR3)] (R = CH3, M = Mo (1); M = W (2); R = Ph, M = Mo (3); CpBz = C5(CH2Ph)5) were prepared by thermal decarbonylation of the corresponding [MHCpBz(CO)3] in the presence of trimethyl- or triphenyl-phosphine. In solution the NMR spectra of all compounds show the presence of cis and trans isomers that interconvert at room temperature. In the solid state the molecular structures obtained for compounds 1 and 2 correspond to the trans isomers, while for 3 the cis isomer is present.The electrochemistry of [MoHCpBz(CO)2(PMe3)] (1), [MoHCpBz(CO)3] (5), [WHCpBz(CO)3] (6), [WCpBz(CO)3]2 (7), and [MCpBz(CO)3(CH3CN)]BF4 (8), is described. The cleavage of M-H bonds takes place upon oxidation or reduction. Cations [MCpBz(CO)2L(CH3CN)]+ form in solvent-assisted M-H bond breaking upon oxidation of [MHCpBz(CO)2L] (L = PMe3, CO). Reduction of [MHCpBz(CO)3] gives [MCpBz(CO)3] and H2. The presence of one PMe3 ligand lowers the reduction potential and precludes the observation of reduction waves.  相似文献   

16.
Reactions of [M(Cp)Cl(μ-Cl)]2 (M = Ir(1a); M = Rh(1b)) with tridentate ligands tpt (tpt = 2,4,6-tripyridyl-1,3,5-triazine) gave the corresponding trinuclear complexes [M3(Cp)33-4-tpt-κN)Cl6] (M = Ir(2a); M = Rh(2b)), which can be converted into hexanuclear complexes [M6(Cp)63-4-tpt-κN)2(μ-Cl)6](O3SCF3)6 (M = Ir(3a); M = Rh(3b)) by treatment with AgO3SCF3, respectively. X-ray of 3b revealed that each of six pentamethylcyclopentadienyl metal moieties was connected by two μ-Cl-bridged atoms and a tridentate ligand to construct a cation triangular metallo-prism cavity with the volume of about 273 Å3 based on the distance of the two triazine moieties is 3.62 Å.  相似文献   

17.
The dimeric copper(I) 3-sila-β-diketiminate [Cu{(N(R)C(Ar))2SiR}]2 · (thf) (1) was obtained from CuI and [Li{(N(R)C(Ar))2SiR}(thf)2] (B) in toluene (R = SiMe3, Ar = C6H3Me2-2,6). When [CuI(PPh3)3] was used as a starting material, the LiI-containing compound [Cu{Si(R)(C(Ar)N(R))2Li(μ-I)}(PPh3)] (2) was isolated. The reaction of [MI(PPh3)n] (M = Ag, n = 3; M = Au, n = 2) with two equivalents of B in toluene gave the isomorphous silver and gold 3-sila-β-diketiminates [M{Si(R)(C(Ar)N(R))2Li}2(μ-I)] [M = Ag (3), Au (4)]. Each of 1-4 was characterised by the multinuclear NMR spectroscopy and single-crystal X-ray diffraction crystallography.  相似文献   

18.
In this study the synthesis, crystal structure and characterization of three new transition metal polynuclear compounds with formula [Cu(dipm)(μ-dca)2]n(H2O) (1), [Ni(dipm)(μ-dca)2]n(C2H6O)1/2 (2) and [Cd(dipm)(μ-dca)2]n (3) (in which dipm = bis(pyrimidin-2-yl)amine and dca = dicyanamide) are reported. The isostructural compounds 1 and 2 contain a double-bridging end-to-end dca unit connecting two metal ions and a single bridging end-to-end dca unit between subsequent metals. Compound 3 exhibits only single bridging end-to-end dca units, oriented in three directions, giving rise to a 3D framework.  相似文献   

19.
Treatment of the tetrameric group eight fluoride complexes [MF(μ-F)(CO)3]4 [M = Ru (1a), Os (1b)] with the alkynylphosphane, Ph2PCCPh, results in fluoride-bridge cleavage and the formation of the air-sensitive monomeric octahedral complexes [MF2(CO)2(PPh2CCPh)2] [M = Ru (2a), Os (2b)] in high yield. The molecular structure of 2b reveals a cis, cis, trans configuration for each pair of ligands, respectively. The free alkyne moieties in 2 can be readily complexed to hexacarbonyldicobalt fragments by treatment with dicobalt octacarbonyl to afford [MF2(CO)2(μ-η12-PPh2CCPh)2{Co2(CO)6}2] [M = Ru (3a), Os (3b)]. Evidence for an intramolecular non-bonded contact between a bound fluoride and a cobalt carbonyl carbon atom is seen in the molecular structure of 3a. Thermolysis of 3a at 50 °C results in fluoride dissociation to give [RuF(CO)2(μ-η12-PPh2CCPh)2{Co2(CO)6}2]+ (4), while no reaction occurred with the osmium analogue. Prolonged thermolysis at 120 °C in a sealed vessel of both 3a and 3b gave only insoluble decomposition products.  相似文献   

20.
A series of titanocene(III) alkoxides L2Ti(III)OR where L = Cp, R = Et(1b), tBu(1a), 2,6-Me2C6H3(1c), 2,6-tBu2-4-Me-C6H2(1d), or L = Cp*, R = Me(2e), tBu(2a), Ph(2f) was synthesized and subjected to reaction with [CpM(CO)3]2 [M = Mo, W], [CpRu(CO)2]2, and Co2(CO)8. The Ti(III) precursors 1a, 1c, 2a, 2e, and 2f reacted with [CpM(CO)3]2 [M = Mo, W] to form heterobimetallic complexes L2Ti(OR)(μ-OC)(CO)2MCp [M = Mo, W], of which Ti and M are linked by an isocarbonyl bridge. Reactions of these Ti(III) complexes with Co2(CO)8 resulted in formation of Ti-Co1 heterobimetallic complexes, from 2a, 2e, or 2f, or Ti-Co3 tetrametallic complexes, Cp2Ti(OtBu)(μ-OC)Co3(CO)9 from 1a, 1b, or 1c. The products were characterized by NMR, IR, and X-ray crystallography. Reaction mechanisms were proposed from these results, in particular, from steric/electronic effects of titanium alkoxides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号