首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactions of fresh M(OH)2 (M = Zn2+, Cd2+) precipitate and (RS)-2-methylglutaric acid (H2MGL), 2,2′-bipyridine (bipy), or 1,10-phenanthroline (phen) in aqueous solution at 50°C afforded four new metal–organic complexes [Zn2(bipy)2(H2O)2(MGL)2] (1), [Zn2(phen)2(H2O)(MGL)2] (2), [Cd(bipy)(H2O)(MGL)] · 3H2O (3), and [Cd(phen)(H2O)(MGL)] · 2H2O (4), which were characterized by single crystal X-ray diffraction, IR spectra, TG/DTA analysis as well as fluorescence spectra. In 1, the [Zn(bipy)(H2O)]2+ moieties are linked by R- and S-2-methylglutarate anions to build up the centrosymmetric dinuclear [Zn2(bipy)2(H2O)2(MGL)2] molecules. In 2, the 1-D ribbon-like chains [Zn2(phen)2(H2O)(MGL)2] n can be visualized as from centrosymmetric dinuclear [Zn2(phen)2(H2O)2(MGL)2] units sharing common aqua ligands. Both 3 and 4 exhibit 1-D chains resulting from [Cd(bipy)(H2O)]2+ and [Cd(phen)(H2O)]2+, respectively, bridged alternately by R- and S-2-methylglutarate anions in bis-chelating fashion. The intermolecular and interchain π···π stacking interactions form supramolecular assemblies in 1 and 1-D chains in 24 into 2-D layers. The hydrogen bonded lattice H2O molecules are sandwiched between 2-D layers in 3 and 4. Fluorescence spectra of 14 exhibit LLCT π → π* transitions.  相似文献   

2.
The reaction of 8-aminoquinoline (8-aq) with M(NO3)2 and M(ClO4)2 (where M = Zn, Cd and Hg) has synthesized complexes of the composition [M(8-aq)2(H2O)2](X)2 (X = NO3, ClO4) whereas MCl2 has isolated M(8-aq)Cl2 type non-ionic compounds. The reaction of M(OAc)2, 8-aq and NaN3/NH4CNS in a 1:1:2 mole ratio has separated polynuclear complexes of the composition [M(8-aq)(Y)2]n (Y = N3, NCS). The complexes have been characterized by spectroscopic data and have been structurally confirmed by single crystal X-ray diffraction study in some representative cases. The X-ray structure of [Zn(8-aq)2(H2O)2](NO3)2 shows C–H–π, and ππ interactions and forms a H-bonded sheet (with interactions between the oxygen of NO3 and C(9)–H of 8-aq/coordinated H2O). A novel one-dimensional cadmium(II) azido complex, [Cd(8-aq)(N3)2]n (9), in which the azido takes on an end-on (EO) bridging mode, has been synthesized and characterized. The presence of ππ interactions result in a supramolecular two-dimensional behaviour for the structure. The complexes are photoluminescent at room temperature.  相似文献   

3.
The new complexes [Co(ecpzdtc)3] (2) [Zn(ecpzdtc)2(py)] (3) and [Cd(ecpzdtc)2(py)]·H2O (4) have been synthesized from sodium 1-ethoxycarbonyl-piperazine-4-carbodithioate [(Na+(ecpzdtc)]. The ligand and the complexes have been characterized by elemental analyses, IR, magnetic susceptibility and single crystal X-ray data. The [Zn(ecpzdtc)2(py)] and [Cd(ecpzdtc)2(py)]·H2O complexes contain pyridine as the co-ligand. [Co(ecpzdtc)3] (2) crystallizes in the monoclinic system, whereas [Zn(ecpzdtc)2(py)] (3) and [Cd(ecpzdtc)2(py)]·H2O (4) crystallize in the triclinic system. The sulfur donor sites of the bidentate ligand chelate the metal center, forming a four-membered CS2M ring. The cobalt complex has a distorted octahedral geometry, the zinc complex is almost between trigonal bipyramidal and square pyramidal, whereas the cadmium complex is square pyramidal. The crystal structures of all the complexes are stabilized by various types of inter and intramolecular hydrogen bonding.  相似文献   

4.
The coordination of organochalcogen (especially Se and Te) substituted Schiff-bases L1H, L2H, L3H, and L4H toward Zn(II) and Hg(II) has been studied. Reactions of these ligands with ZnCl2 in 1?:?1 molar ratio gave binuclear complexes [{2-[PhX(CH2) n N?=?C(Ph)]-6-[PhCO]-4-MeC6H2O}2Zn2Cl2] (where X?=?Se, n?=?2 (1); X?=?Se, n?=?3 (2); X?=?Te, n?=?2 (3); and X?=?Te, n?=?3 (4)) with partial hydrolytic cleavage of proligands. In these complexes, two partially hydrolyzed ligand fragments coordinate tridentate (NOO) with two Zn's. Reaction of HgBr2 with L1H and L2H in 1?:?1 molar ratio gave monometallic complexes [C6H2(4-Me)(OH)[2,6-{C(Ph)?=?N(CH2) n Se(Ph)}2HgBr2]] (n?=?2 (5) or 3 (6)) and under similar conditions with L3H and L4H gave bimetallic complexes [C6H2(4-Me)(OH)[2,6-{C(Ph)?=?N(CH2) n Te(Ph)}2Hg2Br4]] (n?=?2?(7) or 3 (8)) in which the ligands coordinate with metal through selenium or tellurium, leaving the imino nitrogen and phenolic oxygen uncoordinated. The proligands L1H, L2H give 14- or 16-membered metallamacrocycles through Se–Hg–Se linkages and L3H, L4H give 16- or 18-membered metallamacrocycles through Te–Hg–Br–Hg–Te linkages. All the complexes were characterized by elemental analyses, ESIMS, FTIR, multinuclear NMR, UV-Vis, and conductance measurements. The redox properties of the complexes were investigated by cyclic voltammetry (CV). Complexes 14 exhibited ligand-centered irreversible oxidation processes. Complexes 5 and 6 showed metal-centered quasi-reversible single electron transfer, whereas dinuclear complexes 7 and 8 displayed two quasi-reversible, one-electron transfer steps. A single-crystal X-ray structure determination of 1 showed that the coordination unit is centrosymmetric with Zn(II) in square-pyramidal coordination geometry and the two square pyramids sharing an edge. The Zn?···?Zn separation is 3.232?Å. The DNA-binding properties of 1 and 3 with calf thymus DNA were explored by a spectrophotometric method and CV.  相似文献   

5.
New complexes of Cd(II), Zn(II) and Ni(II) with 2-quinolinecarboxaldehyde selenosemicarbazone (Hqasesc) were synthesized and structurally characterized. The structure of the ligand, Cd(II) and Zn(II) complexes was determined by NMR and IR spectroscopy, elemental microanalysis and molar conductivity measurements. Both complexes occur in solution in two forms, the major tetrahedral and minor octahedral. In the major Cd(II) complex one qasesc ligand is coordinated as a tridentate, the fourth coordination site being occupied by acetate, while in the major Zn(II) complex two qasesc ligands are coordinated as bidentates. In both minor complexes two qasesc ligands are coordinated as tridentates forming the octahedral geometry around the central metal ion. The only paramagnetic complex in the series is Ni(II) complex for which X-ray structure analysis was performed. The complex has the angularly distorted octahedral geometry with two qasesc ligands coordinated as tridentates, in a similar way as in the minor complexes of Cd(II) and Zn(II).  相似文献   

6.
Zinc(II), cadmium(II) and mercury(II) complexes of thiourea (TU) and selenourea (SeU) of general formula M(TU)2Cl2 or M(SeU)2Cl2 have been prepared. The complexes were characterized by elemental analysis and NMR (1H, 13C, 15N, 77Se and 113Cd) spectroscopy. A low-frequency shift of the C=S resonance of thiones in 13C NMR and high-frequency shifts of N–H resonances in 1H and 15N NMR are consistent with sulfur or selenium coordination to the metal ions. The Se nucleus in Cd(SeU)2Cl2 in 77Se NMR is deshielded by 87?ppm on coordination, relative to the free ligand. In comparison, the analogous Zn(II) and Hg(II) complexes show deshielding by 33 and 50?ppm, respectively, indicating that the orbital overlap of Se with Cd is better. Principal components of 77Se and 113Cd shielding tensors were determined from solid-state NMR data.  相似文献   

7.
Silica gel-bound amines phase modified with p-dimethylaminobenzaldehyde (p-DMABD) was prepared based on chemical immobilization technique. The product (SG-p-DMABD) was used as an adsorbent for the solid-phase extraction (SPE) Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II) prior to their determination by inductively coupled plasma optical emission spectrometry (ICP-OES). The uptake behaviors of SG-p-DMABD for extracting these metal ions were studied using batch and column procedures. For the batch method, the optimum pH range for Cr(III) and Ni(II) extraction was ≥ 3, for Cu(II), Pb(II) and Zn(II) extraction it was ≥ 4. For simultaneous enrichment and determination of all the metals on the newly designed adsorbent, the pH value if 4.0 was selected. All the metal ions can be desorbed with 2.0 mL of 0.5 mol L− 1 of HCl. The results indicate that SG-p-DMABD has rapid adsorption kinetics using the batch method. The adsorption capacity for these metal ions is in the range of 0.40-1.15 mmol g− 1, with a high enrichment factor of 125. The presence of commonly coexisting ions does not affect the sorption capacities. The detection limits of the method were found to be 1.10, 0.69, 0.99, 1.10 and 6.50 μg L− 1 for Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II), respectively. The relative standard deviation (RSD) of the method under optimum conditions was 5.0% (n = 8) for all metal ions. The method was applied to the preconcentration of Cr(III), Cu(II), Ni(II), Pb(II) and Zn(II) from the certified reference material (GBW 08301, river sediment) and water samples with satisfactory results.  相似文献   

8.
The reaction of copper(II) nitrate trihydrate and 2-(2-pyridyl)benzimidazole (pybzim) leads to [Cu(pybzim)2(NO3)](NO3). The compound has been studied by IR, UV–Vis spectroscopy and X-ray crystallography. The electronic structure of the [Cu(pybzim)2(NO3)]+ cation has been calculated with the density functional theory (DFT) method. The spin-allowed doublet–doublet electronic transitions of [Cu(pybzim)2(NO3)]+ have been calculated with the time-dependent DFT method, and the UV–Vis spectrum of the title compound has been discussed on this basis.  相似文献   

9.
Three new mononuclear complexes [Co(2-Acpy)2(H2O)2](NO3)2 (1), [Ni(2-Acpy)2(H2O)2](NO3)2 (2) and [Cd(2-Acpy)2(NO3)2] (3) (2-Acpy = 2-acetylpyridine) have been synthesized and characterized by elemental analysis, IR and UV–Vis spectroscopy. The structures of 1 and 3 were accomplished by single crystal X-ray diffraction. Crystallographic investigation of 1 reveals monomeric, dicationic units in which the cobalt(II) ion is six-coordinate. The coordination sphere is formed by two N, O bidentate acetylpyridine ligands and two water molecules. The crystal structure of 3 consists of monomeric units in which the cadmium is eight-coordinate. Both the organic ligand and nitrate groups are bidentate chelators. The supramolecular solid-state architecture is sustained by π–π interactions.  相似文献   

10.
Five novel coordination polymers, [Co(bpb)2Cl2] (1), [Co(bpb)2(SCN)2] (2), [Cd(H4bpb)0.5(dmf)(NO3)2] (3), [Cd2(H4bpb)Br4] (4), and [Hg2(H4bpb)I4] (5) [bpb=N,N′-bis(3-pyridylmethyl)-1,4-benzenedimethyleneimine, H4bpb=N,N′-bis(3-pyridylmethyl)-1,4-benzenedimethylamine], were synthesized and their structures were determined by X-ray crystallography. In the solid state, complex 1 is a 1D hinged chain, while 2 has 2D network structure with the ligand bpb serving as a bridging ligand using its two pyridyl N atoms. The imine N atoms keep free of coordination and bpb acts as a bidentate ligand in both 1 and 2. Complexes 3, 4, and 5 with reduced bpb ligand, i.e. H4bpb, show similar 2D network structure, in which ligand H4bpb serves as a tetradentate ligand. Thermogravimetric analyses for complexes 1-5 were carried out and found that they have high thermal stability. The magnetic susceptibilities of compounds 1, 2 were measured over a temperature range of 75-300 K.  相似文献   

11.
Two new complexes, {[Zn(imb)(SO4)]·H2O}n (1) and {[Cd2(imb)2(SO4)2(H2O)]·CH3OH}n (2) (imb?=?2-(1H-imidazol-1-methyl)-1H-benzimidazole), have been solvothermally synthesized. Single-crystal X-ray diffraction shows that 1 displays a 2-D (4,4) network, which is further extended to a 3-D supramolecular structure by hydrogen bonding interactions. Complex 2 exhibits a 3-D framework with (3,5)-connected (42·6)2(42·65·83)2 topology. The results indicate that changing metal ions can influence the coordination modes of sulfate, and then affect the structures of the complexes. In addition, IR and UV–vis spectra, powder X-ray diffraction patterns, thermogravimetric analyses, and fluorescent properties of both complexes have been investigated.  相似文献   

12.
Isothiocyanate complexes of Zn(II) and Cd(II) with the condensation product of 2,6-diacetylpyridine and trimethylammoniumacetohydrazide (Girard’s T reagent) were synthesized, characterized, and their antimicrobial activities were evaluated. The structures of the complexes were determined by elemental analysis, IR, and NMR spectroscopy. The crystal structure of the Zn(II) complex was also determined. Quantum-chemical calculations of the geometry and total energy of isomers of 2,6-diacetylpyridine-bis(trimethylammoniumacetohydrazone) were performed in vacuum and methanol solution, with the aim to explain conformational behavior and E/Z isomerism of this compound. DFT calculations of the molecular structures and the relative stabilities of linkage isomers of the Cd(II) complex showed that the isomer with N–Cd–N coordination of SCN? is the most stable. Complexes of Zn(II) and Cd(II) exhibited low to moderate activity against the tested microbial strains.  相似文献   

13.
以2-甲基-5-(2-吡啶基)-1,3,4-噁二唑(L)为配体合成了[Cu2L2μ-Cl)2Cl2](1)和[CdL2(NO32](2),测定了X射线单晶结构,用红外光谱、紫外光谱、荧光及热重分析进行了表征。配体L和配合物2属于单斜晶系,配合物1属于三斜晶系。L,12的空间群分别为P21/c,P1C2/c。配合物1是通过2个氯原子(Cl1,Cl1i)桥联形成的双桥双核Cu(II)配合物,具有畸变四方锥构型[CuCl3N2]。配合物2具有畸变八面体构型[CdN4O2]。  相似文献   

14.
The persistence of widely used chelating agents EDTA and DTPA in nature has been of concern and there is a need for ligands to replace them. In a search for environmentally friendly metal chelating ligands for industrial applications, complex formation equilibria of N-bis[2-(1,2-dicarboxyethoxy)ethyl]aspartic acid (BCA6) with Cd(II), Hg(II) and Pb(II) in aqueous 0.1 M NaNO3 solution were studied at 25°C by potentiometric titration. Complexation was modeled and the stability constants of the different complexes were determined for each metal ion using the computer program SUPERQUAD. With all metal ions, stable ML4? complexes dominated the complex formation. The stabilities of Cd(II), Hg(II) and Pb(II) chelates of BCA6 are remarkably lower than those of EDTA and DTPA. Environmental advantages of the use of BCA6 instead of EDTA and DTPA are better biodegradability and lower nitrogen content with a possibility to save chemicals and process steps in pulp bleaching.  相似文献   

15.
A new tridentate benzimidazole ligand (L‐C11) containing undecyl chains and its Mn (II) and Zn (II) complexes were synthesised and characterized by spectroscopic and analytical methods. Molecular structures of complexes [Mn(L‐C11)Cl2] and [Zn(L‐C11)Cl2] were evaluated by X‐ray diffraction studies. The X‐ray data showed metal ions in both complexes are five‐coordinate with distorted square pyramidal geometry around the metal centres. The undecyl chains in the structure of the complexes are aligned in an interdigitated manner (head to tail) forming a non‐polar domain. The aggregation properties of the ligand and its complexes were investigated by UV–Vis. absorption and emission spectroscopies in DMF‐water mixtures. The emission spectral data revealed that the compounds showed aggregation induced quenching (AIQ) in DMF‐water solutions. Moreover, thermal properties of the compounds were investigated by TG, DTG and DSC analysis.  相似文献   

16.
The bimetallic [Ni2(H2L2)2](ClO4)4 (1), [Ni2(HL2)(H2L2)](ClO4)3 (2) and [Zn2(H2L2)2](BF4)4 (3) complexes (H2L2 = N,N2-bis[(1E)-1-(2-pyridyl)ethylidene]propanedihydrazide) were synthesized and characterized. The structure of complexes (1) and (2) was established by X-ray analysis. NMR spectroscopy was used for the characterization of complex (3). The complexes (1) and (2) were obtained from the same synthetic reaction and two crystal types of these complexes have been isolated during the fractional crystallization process.  相似文献   

17.
Three supramolecular complexes [Zn(HL1 )2(H2O)2(ZnCl4)2] (1), [Cu(L2 )2Cl2] (2), and [Zn(L3 )Cl2] (3) have been synthesized and characterized by single crystal X-ray diffraction analysis (L1 = 3,5-di(2-pyridyl)-4-amino-1,2,4-triazole, L2 = 3,5-di(2-pyridyl)-1,2,4-triazole, and L3 = 2-pyridinecarboxylic acid (pyridin-2-ylmethylene)-hydrazide). In 1, anion–π interactions between Cl? and the π-systems of L1 are observed and anion–π, hydrogen bonding and π–π stacking interactions link the two complex units of [Zn(HL1 )2(H2O)2]4+ and [ZnCl4]2? to form a 3-D supramolecular network. In 2, π–π stacking interactions between aromatic rings of 1,2,4-triazole and pyridine rings are observed; in 3, hydrogen bonding of Cl ··· H–N and π–π stacking interactions between parallel pyridine rings of L 3 are observed. The mechanisms of rearrangement reactions of L to L1 L3 are discussed. The fluorescent properties for solid 1 and 3 are also investigated.  相似文献   

18.
Chiral Cu(II) and Zn(II) complexes with N,N′-dibenzyl-(R,R)-1,2-diaminocyclohexane ligands were synthesized and characterized. X-ray crystal structures of these complexes reveal that Cu complex has the distorted square-planar geometry and the Zn one has the nearly tetrahedral pattern. The coordination of metals to the chiral diamine ligand leads to a 5-membered metallaheterocycle of (S,S)-configuration of nitrogen atoms. Their asymmetric catalytic activities to nitroaldol reaction of benzaldehyde and nitromethane were examined. The difference of the geometry around metals leads to the opposite preferential configuration of alcohol products using these chiral complexes as asymmetric catalysts in the presence of triethylamine or diisopropylethylamine.  相似文献   

19.
The interaction of zinc(II), lead(II), and cadmium(II) with Glutathione (S‐L‐glutamyl‐Lcysteinylglycine) as primary ligand and zwitterionic buffers (N‐[2‐Hydroxyethyl]piperazine‐N′‐[2‐ethanesulfonic acid]) (HEPES) and (N‐Hydroxyethyl]piperazine‐N′‐[2‐hydroxy‐propanesulfonic acid]) (HEPPSO) as secondary ligands were studied by potentiometric‐pH titration in 1:1:1 ratio at 25.0 °C and I = 0.1 mol.dm?3 (KNO3). The formation constants of different normal and protonated binary and ternary complex species were calculated. Formation constants for the monohydroxy, and dihydroxy complexes for the binary systems M(II) + HEPES and M(II) + HEPPSO have been evaluated. The distribution curves for the various complex species as a function of pH were constructed.  相似文献   

20.
The reactions of Cu (II), Zn (II) and Cd (II) chloride or bromide with (E)-1-(3,4-dimethoxybenzylidene)-4-methylthiosemicarbazone (MTSVT) lead to the formation of new complexes. They were characterized by spectroscopic studies: IR, 1H and 13C NMR. The crystal structures of the compounds [MTSVT] ( L ), [ZnBr2(MTSVT)2] ( 2 ), [CdCl2(MTSVT)2] ( 3 ) and [CdBr2(MTSVT)2.H2O] ( 4 ) were determined by X-ray diffraction. For complexes 2 – 4 , the ion is coordinated through the sulfur atom. All compounds were tested for their antifungal activity against human pathogenic fungi Candida albicans and Aspergillus fumigatus, and for their antibacterial activity against Gram (+) Bacillus subtilis and Enterococcus faecalis as well as against Gram (−) bacteria such as Paracoccus yeei and Acinetobacter baumanii. The results indicated that the metal complexes exhibited a marked enhancement in antibacterial activity compared with the parent Schiff base.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号