首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A series of organotin (IV) complexes with 6-amino-1,3,5-triazine-2,4-dithiol of the type [(RnSnCl4−n)2 (C3H2N4S2)] (n = 3: R = Me 1, n-Bu 2, PhCH23, Ph 4; n = 2: R = Me 5, n-Bu 6, PhCH27, Ph 8) have been synthesized. All the complexes 1-8 have been characterized by elemental analysis, IR, 1H and 13C NMR spectra. Among them complexes 1, 4, 5 and 8 have also been characterized by X-ray crystallography diffraction analyses, which revealed that the tin atoms of complexes 1, 4, 5 and 8 are all five-coordinated with distorted trigonal bipyramid geometries.  相似文献   

2.
Aluminium complexes bearing the N,N-chelating ligand 1,4-bis(2-hydroxy-3,5-di-tert-butyl)piperazine (1) have been synthesised. Both monometallic and bimetallic aluminium methyl complexes (2 and 3, respectively) were prepared by treatment of 1 with the appropriate amount of AlMe3. Complex 2 can be converted to 3 by addition of excess AlMe3. Bimetallic aluminium-ethyl complex 4 was also prepared. Treatment of 1 with AlEt2Cl afforded the monometallic chloride complex 5. Treatment of this latter complex with potassium alkoxides (KOR, R = Me, Et, iPr, tBu) or AgOTf afforded the corresponding aluminium alkoxide complexes (6, R = Et; 7, R = Me; 8, R = iPr; 9, R = tBu; 10, R = OTf) in good yields. Aluminium ethoxide complex 6 was also synthesised by treatment of 1 with AlEt2OEt. All of these complexes were tested as potential catalysts in the ring-opening polymerisation of rac-lactide and caprolactone with limited success.  相似文献   

3.
The coordination chemistry of the tridentate N,N,N pro-ligand bis[2-(3,5-dimethyl-1-pyrazolyl)ethyl]amine (1, LH) with dialkylmagnesium and monoalkyl magnesium halides has been studied. Reaction of 2 equiv of 1 with Mg(nBu)2 gave bis(amido) complex [L]2Mg (3), which is monomeric in the solid state. Alkane elimination reactions from iPrMgCl and MeMgI with 1 equiv of 1 afforded the corresponding halide complexes {[L]MgCl}2 (4) and {[L]MgI}2 (5), which both feature dimeric structures in the solid state, with a chelating and spanned coordination mode of the tridentate ligand, respectively. Additionally, bis(amido) complex 3 was shown to be active for the ring-opening polymerization of racemic lactide at room temperature to yield atactic polylactides with high initiation efficiencies and relatively narrow polydispersities (Mw/Mn = 1.28–1.34).  相似文献   

4.
The organotin (IV) derivatives of 2-mercapto-4-methylpyrimidine (Hmpymt) R3SnL (R = Ph 1, PhCH22, n-Bu 3), R2SnClmLn (m = 1, n = 1, R = CH34, Ph 5, n-Bu 6, PhCH27; m = 0, n = 2, R = CH38, n-Bu 9, Ph 10, PhCH211) were obtained by the reaction of the organotin(IV) chlorides R3SnCl or R2SnCl2 with 2-mercapto-4-methylpyrimidine hydrochloride (HCl · Hmpymt) in 1:1 or 1:2 molar ratio. All complexes 1-11 were characterized by elemental analyses, IR, 1H, 13C and temperature-dependent 119Sn NMR spectra. Except for complexes 3 and 6, the structures of complexes 1, 2, 4, 5, 7, 8-11 were confirmed by X-ray crystallography. Including tin-nitrogen intramolecular interaction, the tin atoms of complexes 1-7 are all five-coordinated and their geometries are distorted trigonal bipyramidal. While the tin atoms of complexes 8-11 are six-coordinated and their geometries are distorted octahedral. Besides, the ligand adopts the different coordination modes to bond to tin atom between the complexes 1, 6, 7 and 2, 3, 4, 5, 8-11. Furthermore, intermolecular Sn?N or Sn?S interactions were recognized in crystal structures of complexes 4, 7 and 11, respectively.  相似文献   

5.
Two types of di-n-butyltin(IV) complexes {[nBu2Sn(O2CR)]2O}2 · L 1-4 and nBu2Sn(O2CR)2Y 5-8 (when L=H2O, R=2-pyrazine 1; L=0, R=2-pyrimidylthiomethylene 2, 1-naphthoxymethylene 3; L=C6H6, R=2-naphthoxymethylene 4; when Y=H2O, R=2-pyrazine 5; Y=0, R=2-pyrimidylthiomethylene 6, 1-naphthoxymethylene 7, 2-naphthoxymethylene 8) have been prepared in 1:1 or 1:2 molar ratios by reactions of di-n-butyltin oxide with the heteroatomic (N, O or S) carboxylic acids. The complexes 1-8 are characterized by elemental, IR, 1H and 13C NMR spectra. And except for complexes 6 and 7, the complexes 1-5 and 8 are also characterized by X-ray crystallography diffraction analyses, which reveal that the tin atom of complex 5 is seven-coordinated, while the complexes 1-4 and 8 are all hexa-coordinated. The nitrogen atom of the aromatic ring in complexes 1 and 5 participates in the interactions with the Sn atom.  相似文献   

6.
Reactions of nBu2SnCl(L1) (1), where L1 = acid residue of 5-[(E)-2-(4-methoxyphenyl)-1-diazenyl]quinolin-8-ol, with various substituted benzoic acids in refluxing toluene, in the presence of triethylamine, yielded dimeric mixed ligand di-n-butyltin(IV) complexes of composition [nBu2Sn(L1)(L2-6)]2 where L2 = benzene carboxylate (2), L3 = 2-[(E)-2-(2-hydroxy-5-methylphenyl)-1-diazenyl]benzoate (3), L4 = 5-[(E)-2-(4-methylphenyl)-1-diazenyl]-2-hydroxybenzoate (4), L5 = 2-{(E)-4-hydroxy-3-[(E)-4-chlorophenyliminomethyl]-phenyldiazenyl}benzoate (5) and L6 = 2-[(E)-(3-formyl-4-hydroxyphenyl)-diazenyl]benzoate (6). All complexes (1-6) have been characterized by elemental analyses, IR, 1H, 13C and 117Sn NMR and 119Sn Mössbauer spectroscopy and their structures were determined by X-ray crystallography, complemented by 117Sn CP-MAS NMR spectroscopy studies in the solid state. The crystal structure of 1 reveals a distorted trigonal bipyramidal coordination geometry around the Sn-atom where the Cl- and N-atoms of ligand L1 occupy the axial positions. In complexes 2-5, the molecules are centrosymmetric dimers in which the Sn-atoms are connected by asymmetric μ-O bridges through the quinoline O-atom to give an Sn2O2 core. The differences in the Sn-O bond lengths within the bridge range from 0.28 to 0.48 Å, with the longer of the Sn-O distances being in the range 2.56-2.68 Å and the most symmetrical bridge being in 5. The carboxylate group is almost symmetrically bidentate coordinated to the tin atom in 5 (Sn-O distances of 2.327(2) and 2.441(2) Å), unlike the other complexes in which the distance of the carboxylate carbonyl O-atom from the tin atom is in the range 2.92-3.03 Å. The structure of 5 displays a more regular pentagonal bipyramidal coordination geometry about each tin atom than in 2-4. In contrast, the centrosymmetric dimeric structure of 6 involves asymmetric carboxylate bridges, resulting in a different Sn2C2O4 motif. The Sn-O bond lengths in the bridge differ by about 0.6 Å, with the longer distance involving the carboxylate carbonyl O-atom (2.683(2) and 2.798(2) Å for two molecules in the asymmetric unit). The carboxylate carbonyl O-atom has a second, even longer intramolecular contact to the Sn-atom to which the carboxylate group is primarily coordinated, with these Sn?O distances being as high as 3.085(2) and 2.898(2) Å. If the secondary interactions are considered, all the di-n-butyltin(IV) complexes (2-6) display a distorted pentagonal bipyramidal arrangement about each tin atom in which the n-butyl groups occupy the axial positions.  相似文献   

7.
The synthesis and full characterization of a number of amino acid and dipeptide derivatives with sulfur-containing side chains derived from ferrocene carboxylic acid and ferrocene-1,1′-dicarboxylic acid is presented. In particular, compounds Fc-CO-(Aaa)n-OMe (4) and Fe[C5H4-CO-(Aaa)n-OMe]2 (3) with (Aaa)n = Cys(Bzl) (a), Cys(Bzl)-Cys(Bzl) (b), Cys(p-OMe-Bzl) (c), Cys(p-OMe-Bzl)-Cys(p-OMe-Bzl) (d), Met (e), and Met-Met (f) were prepared. Also, the free acid derivatives Fe[C5H4-CO-Met-OH]2 (6e) and Fc-CO-Met-OH (7e) were prepared and characterized. The solid state structures of 3a, 4b, and 4e were determined by single crystal X-ray diffraction. Compound 3a shows a 1,3′ substitution pattern on the Cp rings in the solid state. Structures in solution were determined by NMR, IR and CD spectroscopy, with particular emphasis on the question of hydrogen bonding and helical chirality of the metallocene. As an example, the full assignment for the Cp signals in the disubstituted derivative 3a was achieved by simulation of the 1H NMR signals from the cyclopentadienyl ring in combination with 2D-NOESY spectra. In solution, 3a has the known 1,2′ substitution pattern, which is stabilized by intramolecular hydrogen bonds.  相似文献   

8.
Eight new organoantimony(V) complexes with 1-phenyl-1H-tetrazole-5-thiol [L1H] and 2,5-dimercapto-4-phenyl-1,3,4-thiodiazole [L2H] of the type RnSbL5 − n (L = L1: n = 4, R = n-Bu 1, Ph 2, n = 3, R = Me 3, Ph 4; L = L2: n = 4, R = n-Bu 5, Ph 6, n = 3, R = Me 7, Ph 8) have been synthesized. All the complexes 1-8 have been characterized by elemental, FT-IR, 1H and 13C NMR analyses. Among them complexes 2, 6 and 8 have also been confirmed by X-ray crystallography. The structure analyses show that the antimony atoms in complexes 2 and 6 display a trigonal bipyramid geometry, while it displays a distorted capped trigonal prism in complex 8 with two intramolecular Sb?N weak interactions. Furthermore, the supramolecular structure of 2 has been found to consist of one-dimensional linear molecular chain built up by intermolecular C-H?N weak hydrogen bonds, while a macrocyclic dimer has been found in complex 6 linked by intermolecular C-H?S weak hydrogen bonds with head-to-tail arrangement. Interestingly, one-dimensional helical chain is recognized in complex 8, which is connected by intermolecular C-H?S weak hydrogen bonds.  相似文献   

9.
It was established that the reactions of pyrazol-3-yl-substituted nitronyl nitroxide (HL1) and pyrazol-3-yl-substituted imino nitroxide (HL3) with Cu(II) acetate lead to self-assembly of the Cu4(OH)2(OAc)4(DMF)2(L1)2 tetranuclear and Cu2(OAc)2(H2O)2(L3)2 dinuclear complexes, respectively. The reaction of Cu(II) acetate with 5-ethoxycarbonyl-pyrazol-3-yl-substituted nitronyl nitroxide (HL2) gave unexpected solid Cu2(H2O)2(L6)2 · 2DMF, in which L6 is a deprotonated 5-carboxy-pyrazol-3-yl-substituted nitronyl nitroxide, formed as a result of cleavage of an ester bond in the starting HL2. A similar transformation of the paramagnetic ligand was observed in the reaction of Cu(II) acetate with 5-ethoxycarbonyl-pyrazol-3-yl-substituted imino nitroxide (HL4). It led to the formation of Cu2(DMF)2(L7)2, where L7 is deprotonated 2-(5-carboxy-1H-pyrazol-3-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole 3-oxide. An X-ray diffraction study indicated that in Cu4(OH)2(OAc)4(DMF)2(L1)2 and Cu2(OAc)2(H2O)2(L3)2, the L1 and L3 paramagnetic ligands perform the bridging cyclic tridentate function, while in Cu2(H2O)2(L6)2 · 2DMF and Cu2(DMF)2(L7)2, the paramagnetic L6 and diamagnetic L7 are bridging bicyclic tetradentate ligands. The magnetic behavior of complexes with coordinated nitronyl nitroxide – Cu4(OH)2(OAc)4(DMF)2(L1)2 and Cu2(H2O)2(L6)2 · 2DMF is dictated by the dominant antiferromagnetic exchange interactions, which is confirmed by quantum-chemical data. The magnetic susceptibility of Cu2(OAc)2(H2O)2(L3)2 reflects the competition between the antiferromagnetic and ferromagnetic components, of which the latter is due to electron coupling in the Cu(II) ← N=C–N ? O exchange channels. EPR data confirm the results received from static magnetic measurements for multispin solids.  相似文献   

10.
In this work the synthesis of phosphane selenides (FcCC)nPh3−nPSe (2a, n = 1; 2b, n = 2; 2c, n = 3; Fc = ferrocenyl, (η5-C5H4)(η5-C5H5)Fe) from (FcCC)nPh3−nP (1a, n = 1; 1b, n = 2; 1c, n = 3) and selenium is described to estimate the σ-donor properties of these systems by 31P{1H} NMR spectroscopy. Progressive replacement of phenyl by ferrocenylethynyl causes a shielding of the phosphorus atom with increasing of the 1J(31P-77Se) coupling constants.The palladiumdichloride metal-organic complexes [((FcCC)nPh3−nP)2PdCl2] (3a, n = 1; 3b, n = 2; 3c, n = 3) have been used as (pre)catalysts in the Suzuki-Miyaura (reaction of 2-bromo-toluene (4a) and 4-bromo-acetophenone (4b), respectively, with phenyl boronic acid (5) to give 2-methyl biphenyl (6a) and 4-acetyl biphenyl (6b)) and in the Heck-Mizoroki reaction (treatment of iodobenzene (7) with tert-butyl acrylate (8) to give E-tert-butyl cinnamate (9)).The structures of molecules 1a, 1c, 2c, and 3c in the solid state were determined by single X-ray structure analysis showing that the structural parameters of these systems are unexceptional and correspond to those of related phosphanes, seleno phosphanes, and palladium dichloride complexes.  相似文献   

11.
A series of organotin(IV) complexes with 2,5-dimercapto-1, 3, 4-thiodiazole (HHdmt) of the type (RnSnClm)2(dmt) (m=0, n=3, R=Ph 1, PhCH22, n-Bu 3; m=1, n=2, R=Ph 4) and [R2Sn(dmt) · L]n (L=0.5C6H6, R=CH35; L=0, n=5, R=n-Bu 6) have been synthesized. All complexes 1-6 were characterized by elemental analysis, IR, 1H and 13C NMR spectra. And except for 3, complexes 1, 2, 4, 5 and 6 were also determined by X-ray crystallography. The tin atoms of complexes 1, 2, 3 and 4 are all five-coordinated. The geometries at tin atoms of 1, 2, 3 and 4 are distorted trigonal bipyramidal. The tin atoms of complexes 5 and 6 are six-coordinated and their geometries are distorted octahedral.  相似文献   

12.
N,N′,N′′,N′′′-Tetrakis(3-carboxy-propionyl)-1,6,20,25-tetraaza-[6.1.6.1] paracyclophane, H4cp has been complexed with metal (Zn(II) and Cd(II)) 2,2-bipyridyls. The resulting complexes of the composition [{Zn(2,2-bpy)}2(cp)]n·4H2O 1 and [{Cd(2,2-bpy)}2(cp)]n·5H2O 2 (2,2-bpy = 2,2-bipyridine) have been characterized using spectroscopic (IR, solid state UV–Vis), elemental analysis and single-crystal X-ray diffraction measurements. In these complexes the cyclophane coordinates in different modes, and in complex 2, Cd(II) is hepta-coordinated. However, under harsh reaction conditions (using excess nitric acid and a longer reaction time) debranching of the cyclophane is observed in the reaction of Zn(2,2-bpy)(NO3)2 with H4cp, and a complex of the composition [Zn(2,2-bpy)(Suc)]n3 (suc = succinate) is isolated. Using non-covalent interactions, complexes 1 and 2 provide 3D supramolecular structures, whereas an infinite 1D chain structure is observed for complex 3. The thermal and photoluminescence properties of the complexes have also been studied.  相似文献   

13.
Five new 0D–2D Cd(II) complexes, [Cd2(Hbimt)2I4] (1), [Cd(bimt)(Hbimt)Br]n (2), [Cd(Hbimt)Cl2(H2O)]n (3), {[Cd(Hbimt)(SO4)(H2O)2]·1.5H2O}n (4) and [Cd(Hbimt)(SCN)2]n (5) (Hbimt = 2-((benzoimidazol-yl)methyl)-1H-tetrazole) have been synthesized by the reactions of Hbimt with suitable cadmium salts. Employment of different anions can influence the coordination modes of the Hbimt ligand, and accordingly result in different structures ranging from 0D to infinite 1D and 2D networks. Complex 1 displays a dimeric structure in which two Cd(II) ions are bridged through two iodine atoms. Complex 2 was caused by deprotonation of the Hbimt ligand, resulting in a 1D helical chain. While in complexes 3 and 4, Hbimt acts as a bidentate bridging ligand which joins two Cd(II) ions, leading to 1D stair-like chains. Complex 5 exhibits a 2D network structure with infinite 1D [Cd2(SCN)2]n chains. The distinct structures of 1, 2, 3, 4 and 5 reveal that the anions and the versatile coordination modes of the ligand play an important role in the structures of the complexes. In addition, the luminescent properties of complexes 15 have been investigated in the solid state at room temperature.  相似文献   

14.
The organotin(IV) complexes R2Sn(tpu)2 · L [L = 2MeOH, R = Me (1); L = 0: R = n-Bu (2), Ph (3), PhCH2 (4)], R3Sn(Hthpu) [R = Me (5), n-Bu (6), Ph (7), PhCH2 (8)] and (R2SnCl)2 (dtpu) · L [L = H2O, R = Me (9); L = 0: R = n-Bu (10), Ph (11), PhCH2 (12)] have been synthesized, where tpu, Hthpu and dtpu are the anions of 6-thiopurine (Htpu), 2-thio-6-hydroxypurine (H2thpu) and 2,6-dithiopurine (H2dtpu), respectively. All the complexes 1-12 have been characterized by elemental, IR, 1H, 13C and 119Sn NMR spectra analyses. And complexes 1, 2, 7 and 9 have also been determined by X-ray crystallography, complexes 1 and 2 are both six-coordinated with R2Sn coordinated to the thiol/thione S and heterocyclic N atoms but the coordination modes differed. As for complex 7 and 9, the geometries of Sn atoms are distorted trigonal bipyramidal. Moreover, the packing of complexes 1, 2, 7 and 9 are stabilized by the hydrogen bonding and weak interactions.  相似文献   

15.
The synthesis and the characterization of some new aluminum complexes with bidentate 2-pyrazol-1-yl-ethenolate ligands are described. 2-(3,5-Disubstituted pyrazol-1-yl)-1-phenylethanones, 1-PhC(O)CH2-3,5-R2C3HN2 (1a, R = Me; 1b, R = But), were prepared by solventless reaction of 3,5-dimethyl pyrazole or 3,5-di-tert-butyl pyrazole with PhC(O)CH2Br. Reaction of 1a or 1b with (R1 = Me, Et) yielded N,O-chelate alkylaluminum complexes (2a, R = R1 = Me; 2b, R = But, R1 = Me; 2c, R = Me, R1 = Et). Compound 1a was readily lithiated with LiBun in thf or toluene to give lithiated species 3. Treatment of 3 with 0.5 equiv of MeAlCl2 or AlCl3 yielded five-coordinated aluminum complexes [XAl(OC(Ph)CH{(3,5-Me2C3HN2)-1})2] (4, X = Me; 5, X = Cl). Reaction of 5 with an equiv of LiHBEt3 generated [Al(OC(Ph)CH{(3,5-Me2C3HN2)-1})3] (6). Complex 6 was also obtained by reaction of 3 with 1/3 equiv of AlCl3. Treatment of 5 with 2 equiv of AlMe3 yielded complex 2a, whereas with an equiv of AlMe3 afforded a mixture of 2a and [Me(Cl)AlOC(Ph)CH{(3,5-Me2C3HN2)-1}] (7). Compounds 1a, 1b, 2a-2c and 4-6 were characterized by elemental analyses, NMR and IR (for 1a and 1b) spectroscopy. The structures of complexes 2a and 5 were determined by single crystal X-ray diffraction techniques. Both 2a and 5 are monomeric in the solid state. The coordination geometries of the aluminum atoms are a distorted tetrahedron for 2a or a distorted trigonal bipyramid for 5.  相似文献   

16.
A series of NNOO-tetradentate enolic Schiff-base ligands were prepared where ligand L1 = bis(benzoylacetone)propane-1,2-diimine, L2 = bis(acetylacetone)-propane-1,2-diimine, L3 = bis-(acetylacetone)cyclohexane-1,2-diimine. Their further reaction with aluminum tris(ethyl) formed complexes LAlEt (1a, 2a and 3a). The solid structure of complexes 1a, 2a and 3a confirmed by X-ray single crystal analysis manifested that these complexes were all monomeric and five-coordinated with an aluminum atom in the center. The configurations of these complexes varied from trigonal bipyramidal geometry (tbp) to square pyramidal geometry (sqp) due to their different auxiliary ligand architectures. 1H NMR spectra indicated that all these complexes retained their configuration in solution states. Their catalytic properties to polymerize racemic-lactide (rac-LA) in the presence of 2-propanol were also studied. The diimine bridging parts as well as the diketone segment substituents had very close relationship with their performance upon the polymerization process. All these complexes gave moderately isotactic polylactides with controlled molecular weight and very narrow molecular weight distributions.  相似文献   

17.
A series of organotin(IV) complexes with O,O-diethyl phosphoric acid (L1H) and O,O-diisopropyl phosphoric acid (L2H) of the types: [R3Sn · L]n (L = L1, R = Ph 1, R = PhCH22, R = Me 3, R = Bu 4; L = L2, R = Ph 9, R = PhCH210, R = Me 11, R = Bu 12), [R2Cl Sn · L]n (L = L1, R = Me 5, R = Ph 6, R = PhCH27, R = Bu 8; L = L2, R = Me 13, R = Ph 14, R = PhCH215, R = Bu 16), have been synthesized. All complexes were characterized by elemental analysis, TGA, IR and NMR (1H, 13C, 31P and 119Sn) spectroscopy analysis. Among them, complexes 1, 2, 3, 5, 8, 9 and 11 have been characterized by X-ray crystallography diffraction analysis. In the crystalline state, the complexes adopt infinite 1D infinite chain structures which are generated by the bidentate bridging phosphonate ligands and the five-coordinated tin centers.  相似文献   

18.
[MBr(CO)3{κ2(N,O)-pyca}] [M = Mn(1a), Re(1b), pyca = pyridine-2-carboxaldehyde] and [MoCl(η3-C3H4Me-2)(CO)2{κ2(N,O)-pyca}] (1c) react with aminoacid β-alanine to give the corresponding iminopyridine complexes 2a-2c. The same method affords the iminopyridine derivatives from γ-aminobutyric acid (GABA) (3a-3c) and 3-aminobenzoic acid (4a-4c). For complexes 2a-2c, 3a, 3c and 4a, the solid state structures have been determined by X-ray crystallography, revealing interesting differences in their hydrogen-bonding patterns in solid state.  相似文献   

19.
A series of new organotin (IV) complexes with 3-hydroxy-2-pyridinecarboxylic acid (3-OH-2-picH) of two types: R2SnCl(3-OH-2-pic) (I) (R = Me 1, n-Bu 2, Ph 3, PhCH24) and R2 Sn(3-OH-2-pic)2 (II) (R = Me 5, n-Bu 6, Ph 7, PhCH28)have been synthesized by reactions of diorganotin (IV) dichloride with 3-hydroxy-2-pyridinecarboxylic acid in the presence of sodium ethoxide. All complexes are characterized by elemental analyses, IR spectra and NMR spectra analyses. Among them, complexes 1, 5, 6 and 7 are also characterized by X-ray crystallography diffraction analyses. Complex 1 is a 1D polymeric chain with six-coordinate tin atoms and the packing of complex 1 is stabilized by the C-H?Cl intermolecular weak interactions, thus a 2D network of 1 is formed. Complex 5 is also a 1D polymeric chain with seven-coordinate tin atoms. Complex 6 is a zigzag polymeric chain linked by Sn?O intermolecular weak interactions. Complex 7 is a monomeric complex with distorted octahedral geometry.  相似文献   

20.
Cis-diaquobis{di-(2-pyridyl)-N-ethylimine}nickel(II) chloride (2) was obtained from the reaction of di-(2-pyridyl)-N-ethylimine (1) and [NiCl2dppe] [dppe = cis-1,2-bis(diphenylphosphino)ethylene] in a 2:1 ratio in hot acetonitrile. Cis-dichloro{di-(2-pyridyl)-N-ethylimine}palladium(II) (3) and cis-dichloro{di-(2-pyridyl)-N-ethylimine}platinum(II) (4) complexes were obtained from the reaction of MCl2 (M = Pd, Pt) and (1) in equimolar ratio in hot acetonitrile. Compounds 1–4 were characterized by IR spectroscopy, elemental analysis, and mass spectrometry; the complexes 3 and 4 were characterized in solution by NMR. In addition, solid state structures of compounds 14 were determined using single crystal X-ray diffraction analyses. X-ray diffraction data of the complexes 3 and 4 showed a distorted square planar local geometry at palladium and platinum atoms with the chlorine atoms in a cis-coordination; in 2 a local octahedral geometry at nickel atom was observed. Complexes 3 and 4 are arranged as dimers with a M?M distance of 3.4567(4) Å (M = Pd) and 3.4221(4) Å (M = Pt), respectively; 2 consists of units linked by intermolecular hydrogen bonding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号