首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study selected bidentate (L2) and tridentate (L3) ligands were coordinated to the Re(I) or Tc(I) core [M(CO)2(NO)]2+ resulting in complexes of the general formula fac-[MX(L2)(CO)2(NO)] and fac-[M(L3)(CO)2(NO)] (M = Re or Tc; X = Br or Cl). The complexes were obtained directly from the reaction of [M(CO)2(NO)]2+ with the ligand or indirectly by first reacting the ligand with [M(CO)3]+ and subsequent nitrosylation with [NO][BF4] or [NO][HSO4]. Most of the reactions were performed with cold rhenium on a macroscopic level before the conditions were adapted to the n.c.a. level with technetium (99mTc). Chloride, bromide and nitrate were used as monodentate ligands, picolinic acid (PIC) as a bidentate ligand and histidine (HIS), iminodiacetic acid (IDA) and nitrilotriacetic acid (NTA) as tridentate ligands. We synthesised and describe the dinuclear complex [ReCl(μ-Cl)(CO)2(NO)]2 and the mononuclear complexes [NEt4][ReCl3(CO)2(NO)], [NEt4][ReBr3(CO)2(NO)], [ReBr(PIC)(CO)2(NO)], [NMe4][Re(NO3)3(CO)2(NO)], [Re(HIS)(CO)2(NO)][BF4], [99Tc(HIS)(CO)2(NO)][BF4], [99mTc(IDA)(CO)2 (NO)] and [99mTc(NTA)(CO)2(NO)]. The chemical and physical characteristics of the Re and Tc-dicarbonyl-nitrosyl complexes differ significantly from those of the corresponding tricarbonyl compounds.  相似文献   

2.
[MNCl2(PPh3)2] complexes (M = Re, Tc) react with N‐[(dialkylamino)(thiocarbonyl)]‐N′‐(2‐hydroxyphenyl)benzamidines (H2L1) with formation of neutral, five‐coordinate nitrido complexes of the composition [MN(L1)(PPh3)]. The products have distorted square‐pyramidal coordination spheres with each a tridentate, double‐deprotonated benzamidine and a PPh3 ligand in their basal planes.  相似文献   

3.
Twelve ruthenium(III) complexes bearing amine-bis(phenolate) tripodal ligands of general formula [Ru(L1–L3)(X)(EPh3)2] (where L1–L3 are dianionic tridentate chelator) have been synthesized by the reaction of ruthenium(III) precursors [RuX3(EPh3)3] (where E = P, X = Cl; E = As, X = Cl or Br) and [RuBr3(PPh3)2(CH3OH)] with the tripodal tridentate ligands H2L1, H2L2 and H2L3 in benzene in 1:1 molar ratio. The newly synthesized complexes have been characterized by analytical (elemental and magnetic susceptibility) and spectral methods. The complexes are one electron paramagnetic (low-spin, d5) in nature. The EPR spectra of the powdered samples at RT and the liquid samples at LNT shows the presence of three different ‘g’ values (gx ≠ gy ≠ gz) indicate a rhombic distortion around the ruthenium ion. The redox potentials indicate that all the complexes undergo one electron transfer process. The catalytic activity of one of the complexes [Ru(pcr-chx)Br(AsPh3)2] was examined in the transfer hydrogenation of ketones and was found to be efficient with conversion up to 99% in the presence of isopropanol/KOH.  相似文献   

4.
Acetato-bis(pyrazole) complexes [Mo(η3-methallyl)(O2CMe)(CO)2(pzH)2], (methallyl = CH2C(CH3)CH2) and fac-[M(O2CMe)(CO)3(pzH)2], (pzH = pyrazole or 3,5-dimethylpyrazole, dmpzH; M = Mn, Re) are obtained from [Mo(η3-methallyl)Cl(CO)2(NCMe)2] or fac-[MBr(CO)3(NCMe)2] [M = Mn (synthesized in situ), Re], 2 equiv. of pyrazole, and 1 equiv. of sodium acetate for Mo complexes, or silver acetate for Mn or Re complexes. The chlorido-complexes [Mo(η3-methallyl)Cl(CO)2L2] (L = pzH, dmpzH), obtained from the same starting material by substitution of MeCN by pzH or dmpzH, are also described. The crystal structures of the fac-acetato-bis(dimethylpyrazole) complexes present the same pattern of intramolecular hydrogen bonds between the acetate and the dimetylpyrazole ligands, whereas the crystal structures of the fac-acetato-bis(pyrazole) complexes show different hydrogen bonds patterns, with intermolecular interactions. NMR data indicate that these interactions are not maintained in solution.  相似文献   

5.
Technetium and rhenium tricarbonyl complexes with derivatized cyclopentadienyl ligands were prepared starting from pertechnetate and an appropriate ferrocene ligand. Furthermore, the complexes (M(CO)3cp-COOC5H9N-R, M = Tc, Re; R = Me, isopropyl) could be obtained starting from the precursor complexes [99mTc(CO)3(H2O)3]+ and [Re(CO)3Br3]2−. Their chemical identity was confirmed by chromatographic methods and electron spray mass spectrometry. The biodistribution of the 99mTc complexes (cytectrene I and cytectrene II) in Wistar rats was studied. Both compounds show high uptake in the brain and fast blood clearance. The pattern of regional distribution in the brain demonstrated in autoradiographic studies indicates binding to the 5-HT1A and α1 adrenergic receptors.  相似文献   

6.
The reactions of the potentially tridentate Schiff bases 2-[(2-hydroxyphenyl)iminomethyl]phenol (H2ono) and 2-(2-aminobenzylideneimino)phenol (H3onn) with trans-[ReOBr3(PPh3)2] were studied, and the complexes [ReIIIBr(PPh3)2(ono)] (1) and [ReVBr(PPh3)2(onn)]Br (2) were isolated. In 1ono acts as a dianionic tridentate ligand, and in 2onn is coordinated as a tridentate trianionic imido-imino-phenolate. The complex [ReI(CO)3(ons)(Hno)] was isolated from the reaction of [Re(CO)5Br] with 2-[(2-methylthio)benzylideneimino]phenol (Hons; Hno = 2-aminophenol), with ons coordinated as a bidentate chelate with a free SCH3 group. These complexes were characterized by X-ray crystallography, NMR and IR spectroscopy.  相似文献   

7.
The p-tolylimido rhenium(V) complexes [Re(p-NC6H4CH3)X3(EPh3)2] (X = Cl, Br; E = As, P) and [Re(p-NC6H4CH3)Cl2(hmpbta)(PPh3)]·MeCN have been synthesized and characterized spectroscopically and structurally. The electronic spectra of [Re(p-NC6H4CH3)Cl3(PPh3)2] and [Re(p-NC6H4CH3)Cl2(hmpbta)(PPh3)](Hhmpbta-2-(2′-hydroxy-5′-methylphenyl)benzotriazole) were investigated at the TDDFT level employing B3LYP functional in combination with LANL2DZ. Additional information about bonding between the rhenium atom and p-tolylimido ligand in the complexes [Re(p-NC6H4CH3)Cl3(PPh3)2] and [Re(p-NC6H4CH3)Cl2(hmpbta)(PPh3)] was obtained by NBO analysis.  相似文献   

8.
Tungsten(VI) and molybdenum(VI) complexes [MO(L1)Cl2] and [M(X)(L2)Cl3] (X = O, NPh) with tridentate aminobis(phenolate) ligand L1 = methylamino-N,N-bis(2-methylene-4,6-dimethylphenolate) and bidentate aminophenolate ligand L2 = 2,4-di-tert-butyl-6-((dimethylamino)methyl)phenolate) were prepared and characterised. These complexes are principally stable in open atmosphere under ambient conditions. When activated with Et2AlCl, they exhibited high activity in ring-opening metathesis polymerisation (ROMP) of 2-norbornene (NBE) and its derivatives. Especially complexes [M(NPh)(L2)Cl3], which are easily available from corresponding metal oxides MO3 by a simple three-step synthesis, were found very efficient ROMP catalysts for NBE (M = Mo, W) and 2-norbornen-5-yl acetate (M = Mo).  相似文献   

9.
The reactions of 5-R-2-hydroxybenzaldehyde-4-allyl-thiosemicarbazone {R: H (L1); Br (L2)} with [MII(PPh3)nCl2] (M = Ni, n = 2 and M = Ru, n = 3) in a 1:1 molar ratio have given stable solid complexes corresponding to the general formula [Ni(L)(PPh3)] and [Ru(HL)2(PPh3)2]. While the 1:1 nickel complexes are formed from an ONS donor set of the thiosemicarbazone and the P atom of triphenylphosphine in a square planar structure, the 1:2 ruthenium complexes consist of a couple from each of N, S and P donor atoms in a distorted octahedral geometry. These mixed-ligand complexes have been characterized by elemental analysis, IR, UV–Vis, APCI-MS, 1H and 31P NMR spectroscopies. The structures of [Ni(L2)(PPh3)] (II) and [Ru(L1H)2(PPh3)2] (III) were determined by single crystal X-ray diffraction.  相似文献   

10.
Novel p-tolylimido rhenium(V) complexes [Re(p-NC6H4CH3)X2(hpb)(PPh3)] and [Re(p-NC6H4CH3)(hpb)2(PPh3)]X (X = Cl, Br) have been obtained in the reactions of [Re(p-NC6H4CH3)X3(PPh3)2] with 2-(2-hydroxyphenyl)-1H-benzimidazole (Hhpb). The compounds were identified by elemental analysis IR, UV-Vis spectroscopy and X-ray crystallography. The electronic structures of the complex [Re(p-NC6H4CH3)Cl2(hpb)(PPh3)] and the cation [Re(p-NC6H4CH3)(hpb)2(PPh3)]+ have been calculated with the density functional theory (DFT) method. Additional information about binding in the [Re(p-NC6H4CH3)Cl2(hpb)(PPh3)] and [Re(p-NC6H4CH3)(hpb)2(PPh3)]+ has been obtained by NBO analysis. The electronic spectra of [Re(p-NC6H4CH3)Cl2(hpb)(PPh3)] and [Re(p-NC6H4CH3)(hpb)2(PPh3)]Cl were investigated at the TDDFT level employing B3LYP functional in combination with LANL2DZ.  相似文献   

11.
Nitrosylation reactions are rare in the context of low valent Re(I)- and Tc(I)-tricarbonyl complexes so far. We herein describe a method for the conversion of a “M(CO)3-moiety” (M = Re, Tc) into a dicarbonyl-nitrosyl moiety “M(CO)2NO”, the synthesis of important precursor complexes and intermediates and possible applications for this new kind of Re- and Tc-chemistry.The behavior of the complex [ReCl3(CO)2(NO)] in water was studied in detail and compared to that of [ReCl3(CO)3]2−. Contrary to the conversion of [ReCl3(CO)3]2− to the mixed aquo-carbonyl complex [Re(OH2)3(CO)3]+ in water, one chloride remains initially bound to the metal center in the dicarbonyl-nitrosyl complex, making [ReCl(OH2)2(CO)2(NO)]+ the main species for further reactions. In this context, we isolated and characterized the complex [Re(μ3-O)(CO)2(NO)]4. Examples of complexes with different bi- and tridentate ligands based on ReCl3(CO)2(NO)] are discussed.For the development of potential new radiopharmaceuticals we also adapted the nitrosylation technique to the n.c.a. level with 99mTc. [99mTc(OH2)3(CO)3]+ served as starting material to form a 99mTc(CO)2(NO)-core. Labelling reactions with ligands such as iminodiacetic acid (IDA), nitrilotriacetic acid (NTA) and diethylenetriamine pentaacetic acid (DTPA) were performed, resulting in the complexes [99mTc(IDA)(CO)2(NO)], [99mTc(NTA)(CO)2(NO)] and [99mTc(DTPA)(CO)2(NO)]. In this way, the “nitrosyl-approach” adds a new and challenging synthetic tool to the already established organometallic chemistry of Re- and Tc-tricarbonyl complexes.  相似文献   

12.
Reaction of Ph3PCHCOC6H4Me (L), with HgX2 and CdCl2·H2O in methanol with equimolar ratios give binuclear complexes of the type [MX(μ-X){CH(PPh3)C(O)C6H4Me}]2 (M = Hg; X = Cl (1), Br (2), I (3), M = Cd; Cl(4)). The bridge-splitting reaction of binuclear complexes [MX(μ-X){CH(PPh3)C(O)C6H4Me}]2 by dimethyl sulfoxide (DMSO) yields the mononuclear complexes [MX2{CH(PPh3)C(O)C6H4Me}(OSMe2)] (M = Hg; X = Cl (5), Br (6), I (7), M = Cd; Cl (8)). The characterization of these complexes was carried out by elemental analysis and FT-IR, 1H, 31P, and 13C NMR spectroscopies. C-coordination of ylide and O-coordination of DMSO are demonstrated by single-crystal X-ray analysis of mononuclear complex of [HgBr2{CH(PPh3)C(O)C6H4Me}(OSMe2)] (6). Complex 6 is monomeric with tetrahedral geometry around the metal ion.  相似文献   

13.
Treatment of the uranium(IV) complexes [{ML1(py)}2UIV] (M = Cu, Zn; L1 = N,N′-bis(3-hydroxysalicylidene)-1,3-propanediamine) with silver nitrate in pyridine led to the formation of the corresponding cationic uranium(V) species which were found to be thermally unstable and were converted back into the parent UIV complexes; no electron transfer was observed in solution between the UIV and UV compounds. In the crystals of [{ML1(py)}2UIV][{ML1(py)}2UV][NO3], the neutral UIV and cationic UV species are clearly identified by the distinct U–O distances. Similar reaction of [{ZnL2(py)}2UIV] [L2 = N,N′-bis(3-hydroxysalicylidene)-1,4-butanediamine] with AgNO3 gave crystals of [{ZnL2(py)}UV{ZnL2(py)2}][NO3] but the copper counterpart was not isolated. Crystals of [{ZnL1(py)}2UV][OTf] · THF (OTf = OSO2CF3) were obtained fortuitously from the reaction of [Zn(H2L1)] and U(OTf)3.  相似文献   

14.
Treatment of either RuHCl(CO)(PPh3)3 or MPhCl(CO)(PPh3)2 with HSiMeCl2 produces the five-coordinate dichloro(methyl)silyl complexes, M(SiMeCl2)Cl(CO)(PPh3)2 (1a, M = Ru; 1b, M = Os). 1a and 1b react readily with hydroxide ions and with ethanol to give M(SiMe[OH]2)Cl(CO)(PPh3)2 (2a, M = Ru; 2b, M = Os) and M(SiMe[OEt]2)Cl(CO)(PPh3)2 (3a, M = Ru; 3b, M = Os), respectively. 3b adds CO to form the six-coordinate complex, Os(SiMe[OEt]2)Cl(CO)2(PPh3)2 (4b) and crystal structure determinations of 3b and 4b reveal very different Os-Si distances in the five-coordinate complex (2.3196(11) Å) and in the six-coordinate complex (2.4901(8) Å). Reaction between 1a and 1b and 8-aminoquinoline results in displacement of a triphenylphosphine ligand and formation of the six-coordinate chelate complexes M(SiMeCl2)Cl(CO)(PPh3)(κ2(N,N)-NC9H6NH2-8) (5a, M = Ru; 5b, M = Os), respectively. Crystal structure determination of 5a reveals that the amino function of the chelating 8-aminoquinoline ligand is located adjacent to the reactive Si-Cl bonds of the dichloro(methyl)silyl ligand but no reaction between these functions is observed. However, 5a and 5b react readily with ethanol to give ultimately M(SiMe[OEt]2)Cl(CO)(PPh3)(κ2(N,N-NC9H6NH2-8) (6a, M = Ru; 6b, M = Os). In the case of ruthenium only, the intermediate ethanolysis product Ru(SiMeCl[OEt])Cl(CO)(PPh3)(κ2(N,N-NC9H6NH2-8) (6c) was also isolated. The crystal structure of 6c was determined. Reaction between 1b and excess 2-aminopyridine results in condensation between the Si-Cl bonds and the N-H bonds with formation of a novel tridentate “NSiN” ligand in the complex Os(κ3(Si,N,N)-SiMe[NH(2-C5H4N)]2)Cl(CO)(PPh3) (7b). Crystal structure determination of 7b shows that the “NSiN” ligand coordinates to osmium with a “facial” arrangement and with chloride trans to the silyl ligand.  相似文献   

15.
The reactions of [ReX3(MeCN)(PPh3)2] (X = Cl or Br) with 1-(2-pyridylazo)-2-naphthol (HPAN) have been examined and the [ReBr(PAN)2] · 2CHCl3 (1) and [ReCl(PAN)2] (2) complexes have been obtained. The both complexes have been structurally and spectroscopically characterized, and compound 1 has been additionally studied by magnetic measurements. The magnetic behavior is characteristic of mononuclear seven-coordinated Re(III) complex with d4 low-spin configuration, which gives diamagnetic ground state.  相似文献   

16.
The phosphite complexes cis-[PtMe2L(SMe2)] in which L = P(OiPr)3, 1a, or L = P(OPh)3, 1b, were synthesized by the reaction of cis,cis-[Me2Pt(μ-SMe2)2PtMe2] with 2 equiv. of L. If 4 equiv. of L was used the bis-phosphite complexes cis-[PtMe2L2] in which L = P(OiPr)3, 2a, or L = P(OPh)3, 2b, were obtained. The reaction of cis-[Pt(p-MeC6H4)2(SMe2)2] with 2 equiv. of L gave the aryl bis-phosphite complexes cis-[Pt(p-MeC6H4)2L2] in which L = P(OiPr)3, 2a′, or L = P(OPh)3, 2b′. Use of 1 equiv. of L in the latter reaction gave the bis-phosphite complex along with the starting complex in a 1:1 ratio.The complexes failed to react with MeI. The reaction of cis,cis-[Me2Pt(μ-SMe2)2PtMe2] with 2 equiv. of the phosphine PPh3 gave cis-[PtMe2(PPh3)2] and cis-[PtMe2(PPh3)(SMe2)] along with unreacted starting material. Reaction of cis-[PtMe2L(SMe2)], 1a and 1b with the bidentate phosphine ligand bis(diphenylphosphino)methane, dppm = Ph2PCH2PPh2, gave [PtMe2(dppm)], 8, along with cis-[PtMe2L2], 2. The reaction of cis-[PtMe2L(SMe2)] with 1/2 equiv. of the bidentate N-donor ligand NN = 4,4′-bipyridine yielded the binuclear complexes [PtMe2L(μ-NN)PtMe2L] in which L = P(OiPr)3, 3a, or L = P(OPh)3, 3b.The complexes were fully characterized using multinuclear NMR (1H, 13C, 31P, and 195Pt) spectroscopy.  相似文献   

17.
The phenylimidorhenium(V) complexes [Re(NPh)X3(PPh3)2] (X = Cl, Br) react with the N‐heterocyclic carbene (NHC) 1,3‐diethyl‐4,5‐dimethylimidazole‐2‐ylidene (LEt) under formation of the stable rhenium(V) complex cations [Re(NPh)X(LEt)4]2+ (X = Cl, Br), which can be isolated as their chloride or [PF6]? salts. The compounds are remarkably stable against air, moisture and ligand exchange. The hydroxo species [Re(NPh)(OH)(LEt)4]2+ is formed when moist solvents are used during the synthesis. The rhenium atoms in all three complexes are coordinated in a distorted octahedral fashion with the four NHC ligands in equatorial planes of the molecules. The Re–C(carbene) bond lengths between 2.171(8) and 2.221(3) Å indicate mainly σ‐bonding between the NHC ligand and the electron deficient d2 metal atoms. Attempts to prepare analogous phenylimido complexes from [Re(NPh)Cl3(PPh3)2] and 1,3‐diisopropyl‐4,5‐dimethylimidazole‐2‐ylidene (Li?Pr) led to a cleavage of the rhenium‐nitrogen multiple bond and the formation of the dioxo complex [ReO2(Li?Pr)4]+.  相似文献   

18.
Neutral oxorhenium(V) complexes with thiosemicarbazones derived from 2‐pyridine formamide, HL1, are formed when [ReOCl3(PPh3)2] reacts with equimolar amounts of the ligands. Reduction of the metal and the formation of rhenium(III) complexes of the composition [Re(L1)2]+ occurs when an excess of thiosemicarbazones is used and the reaction is performed in boiling toluene for a prolonged period of time. The thiosemicarbazones deprotonate and act as tridentate ligands as has been confirmed by an X‐ray structure of [ReOCl2(L1b)], where HL1b is 2‐pyridineformamide‐N(4)‐ethylthiosemicarbazone and the ligand occupies the equatorial coordination sphere of the complex together with one of the chloro ligands.  相似文献   

19.
The reaction of M(η6-1,3,5-Me3C6H3)2, M = Cr, Mo, with the tetrahalides of Groups 4 and 5 elements proceeds with the monoelectronic oxidation of the metal bis-arene to the [M(η6-Me3C6H3)2]+ cation. In the case of MX4, M = Ti, X = Cl, Br, M = V, X = Cl, and of Nb2Cl10 the reduction products are the titanium(III), vanadium(III) halides and the niobium(IV) chloride, isolated as the solvate anions [MCl4(THF)2] and [NbCl4(CH3CN)]. The reaction of the tetrachloro complexes MCl4(THF)2, M = Zr, Hf, with Cr(η6-1,3,5-Me3C6H3)2 in THF produces the ionic [Cr(η6-1,3,5-Me3C6H3)2][MCl5(THF)], which has been characterized by single-crystal X-ray diffraction in the case of hafnium.  相似文献   

20.
Treatment of [Cp′MH(CO)3] (M = Mo, W; Cp′ = η5-C5H5 (Cp), η5-C5Me5 (Cp*)) with 1/8 equiv of S8 in THF, followed by the reaction with dppe under UV irradiation, gave new mono(hydrosulfido) complexes [Cp′M(SH)(CO)(dppe)] (Cp′ = Cp: M = Mo (5), W (6); Cp′ = Cp*: M = Mo (7), W (8); dppe = Ph2PCH2CH2PPh2). When 5 and 6 dissolved in THF were allowed to react with [RhCl(PPh3)3] in the presence of base, heterodinuclear complexes with bridging S and dppe ligands [CpM(CO)(μ-S)(μ-dppe)Rh(PPh3)] (M = Mo (9), W(10)) were obtained. Semi-bridging feature of the CO ligands were also demonstrated. Upon standing in CH2Cl2 solutions, 9 and 10 were converted further to the dimerization products [(CpM)2{Rh(dppe)}22-CO)23-S)2] (M = Mo (13), W). Detailed structures of mononuclear 7 and 8, dinuclear 9 and tetranuclear 13 have been determined by the X-ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号