首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sterically bulky pyrazines have been successfully utilized for the preparation of discrete oligo-nuclear TBP (trigonal bipyramidal), SqP (square pyramidal), and Oh (octahedral) copper(II) complexes. We have synthesized a unique linear pentanuclear complex [{Cu(hfac)2}5(μ-2-butyl-3-methylpyrazine)4]. The two terminal copper(II) ions have a SqP structure while the three inner ions have an Oh one. The solvent molecule was incorporated in the clearance of the lattice. From another reaction under harsh conditions, we separated [{Cu(hfac)2}3(μ-2-butyl-3-methylpyrazine)2], which can be regarded as the central moiety of the pentanuclear one. We also prepared a dinuclear complex [{Cu(hfac)2}2(μ-tetramethylpyrazine)], in which the pyrazine nitrogen atoms were located at TBP equatorial positions. Single-crystal EPR measurements supported its compressed TBP structure. The exchange coupling was antiferromagnetic with JTBP–TBP/kB = −3.6 K. The linear trinuclear [{Cu(hfac)2}3(μ-2,3,5-trimethylpyrazine)2], having two TBP Cu ions with an intervening Oh Cu ion, showed very weak antiferromagnetic coupling. DFT calculations on these compounds indicated that the σ-type orbital overlap between the Cu and N atoms is essential for superexchange interactions.  相似文献   

2.
《Polyhedron》2005,24(16-17):2584-2587
We designed spiro-fused dinculear complexes using tetrakis(2-pyridyl)methane (py4C) for the development of ground high-spin molecules. We attempted to prepare a dinuclear copper(II) complex [{Cu(hfac)2}2(py4C)], where hfac stands for 1,1,1,5,5,5-hexafluoropentane-2,4-dionate, but we obtained [Cu(hfac)2(py4C)] and [Cu(hfac)(py4C) · Cu(hfac)3]. These molecular structures were determined by the X-ray crystal structure analysis.  相似文献   

3.
The structure, spectroscopy and electrochemical properties of a novel dinuclear copper(II) complex, [{Cu(phen)2}2(μ-CH3COO)][PF6]3 where phen = 1,10-phenanthroline, is reported. The crystal structure contains two independent Cu(II) ions, with different geometry around each copper center, which are bridged by an acetate anion. The acetate-bridged ligand shows a syn–anti coordination mode with a trigonal bipyramidal geometry for the Cu(1) center and a distorted square-based pyramidal geometry for the Cu(2) center. The angular structural index parameter τ for Cu(1) and Cu(2) is 0.9 and 0.33, respectively. The copper(II) atoms display a different geometry with a N4O chromophore group and with Cu–O distances of 1.993(5)–1.996(5) Å and Cu–N distances which vary from 1.980(5) to 2.161(6) Å. The intra Cu…Cu separation is 4.9904(5) Å. The effective magnetic moment (μeff) of the complex was measured by the Evans method. The cyclic voltammogram of [{Cu(phen)2}2(μ-CH3COO)][PF6]3 shows two waves at positive potential which are assigned to the two Cu(II/I) reduction couples.  相似文献   

4.
Three mixed-valence copper complexes [{Cu(phen)2}2(μ-L)](PF6)2 (where phen = 1,10-phenanthroline, L = 1,4-dicyanamidobenzene (dicyd)), 1,4-dicyanamido-2,5-dimethylbenzene (Me2dicyd) and 1,4-dicyanamido-2,5-dichlorobenzene (Cl2dicyd), and one dinuclear Cu(II) complex [{Cu(phen)2}2(μ-apc)](PF6)3 (where apc = monoanion of 4-azo(phenylcyanamido)benzene) have been prepared and characterized by elemental analysis, IR and electronic absorption spectroscopies and cyclic voltammetry. [{Cu(phen)2}2(μ-apc)](PF6)3 · 2CH3COCH3 crystallized in the triclinic system and both five-coordinate Cu(II) ions in the dinuclear unit are linked through a bridging 4-azo(phenylcyanamido)benzene (apc) ligand. The cyanamide group (NCN) of the bridging ligand is coordinated to Cu(II) ions through the cyano-nitrogen and amido-nitrogen. The bond length between Cu(1) and cyano-nitrogen is slightly larger than that formed by Cu(2) and amido-nitrogen. The angular structural index parameters, τ, for Cu(1) and Cu(2) are 0.9 and 0.5, respectively. The copper(II) atoms display a different geometry with a N5 chromophore group. The intra Cu?Cu separation is 5.156(1) Å. All of the dicyd dinuclear copper complexes show radical anion absorption.  相似文献   

5.
《化学:亚洲杂志》2017,12(22):2929-2941
In contrast to diradicals connected by alternant hydrocarbons, only a few studies on those connected by nonalternant hydrocarbons have been reported. The syntheses, structures, and magnetic properties of azulene‐1,3‐diyl linked bis(nitronyl nitroxide) (NN2Az) and bis(iminonitroxide) (IN2Az) diradicals and their Cu(hfac)2 (hfac=hexafluoroacetylacetonate) complexes were investigated. NN2Az was shown to have an intramolecular ferromagnetic interaction with J obs/k B=+10.0 K (H =−2J S 1 ⋅S 2) between (nitronyl nitroxide) spins, whereas IN2Az was estimated to have a much weaker intramolecular magnetic interaction. The reactions of NN2Az and IN2Az with Cu(hfac)2 gave a 1:2 [{Cu(hfac)2}2(NN2Az)] complex and a 1:1 [Cu(hfac)2(IN2Az)] ⋅ C6H12 complex, respectively. [{Cu(hfac)2}2(NN2Az)] showed strong intramolecular antiferromagnetic interactions (J 1‐Cu‐R/k B≈−800 K, J 2‐Cu‐R/k B≈−500 K) between the CuII spins and the coordinating NN spins, whereas [Cu(hfac)2(IN2Az)] exhibited a ferromagnetic exchange interaction (J obs‐Cu‐R/k B=+114 K) between the CuII spin and the imino‐coordinated iminonitroxide spin.  相似文献   

6.
A method was developed for the synthesis of a nitronyl nitroxide containing cyclopentane substituents in positions 4 and 5 of the imidazoline ring, viz., 2-(3-pyridyl)-4,5-bis(spiropentyl)-4,5-dihydro-1H-imidazole-3-oxide-1-oxyl (LCP). The reaction of CuII hexafluoroacetylacetonate with LCP affords different products depending on the reaction conditions: mononuclear [Cu(hfac)2(LCP)2], binuclear [Cu(hfac)2LCP]2, tetranuclear {[Cu(hfac)2]4(LCP)2}, or chain polymer {[Cu(hfac)2]3(LCP)2} n . Temperature changes induce structural transformations accompanied by a change in the spin state in exchange clusters in the solid [Cu(hfac)2LCP]2 and {[Cu(hfac)2]4(LCP)2}.  相似文献   

7.
《Polyhedron》2007,26(9-11):1811-1819
Seven kinds of polynuclear complexes of [Cu(hfac)2] (Hhfac = 1,1,1,5,5,5-hexafluoropentane-2,4-dione) with diazaaromatic rings have been prepared. The crystal structures of [{Cu(hfac)2(μ-L)}n] (L = 2,5- and 2,6-dimethylpyrazines, propylpyrazine (prpyz), quinoxaline, phenazine, 4,6-dimethylpyrimidine, and 1,6-naphthyridine) have been determined. These complexes consist of a one-dimensional chain structure, and the geometry around the copper ion is approximately an octahedral structure. The relations between the magnetic properties and coordination structure were discussed from the magnetic measurements. In the μ-prpyz complex, one nitrogen atom is coordinated to a copper ion at an axial position, and at the same time the other coordinated at an equatorial site of a neighboring copper ion. This complex showed antiferromagnetic interaction with J/kB = −0.086(3) K estimated from the Bonner–Fisher model. Weak magnetic interaction is caused by the somewhat long Cu–N distances due to the steric effect from the bridging ligands.  相似文献   

8.
Four new compounds of formulas [Cu(hfac)2(L)] (1), [Ni(hfac)2(L)] (2), [{Cu(hfac)2}2(µ-L)]·2CH3OH (3) and [{Ni(hfac)2}2(µ-L)]·2CH3CN (4) [Hhfac = hexafluoroacetylacetone and L = 3,6-bis(picolylamino)-1,2,4,5-tetrazine] have been prepared and their structures determined by X-ray diffraction on single crystals. Compounds 1 and 2 are isostructural mononuclear complexes where the metal ions [copper(II) (1) and nickel(II) (2)] are six-coordinated in distorted octahedral MN2O4 surroundings which are built by two bidentate hfac ligands plus another bidentate L molecule. This last ligand coordinates to the metal ions through the nitrogen atoms of the picolylamine fragment. Compounds 3 and 4 are centrosymmetric homodinuclear compounds where two bidentate hfac units are the bidentate capping ligands at each metal center and a bis-bidentate L molecule acts as a bridge. The values of the intramolecular metal···metal separation are 7.97 (3) and 7.82 Å (4). Static (dc) magnetic susceptibility measurements were carried out for polycrystalline samples 1–4 in the temperature range 1.9–300 K. Curie law behaviors were observed for 1 and 2, the downturn of χMT in the low temperature region for 2 being due to the zero-field splitting of the nickel(II) ion. Very weak [J = −0.247(2) cm−1] and relatively weak intramolecular antiferromagnetic interactions [J = −4.86(2) cm−1] occurred in 3 and 4, respectively (the spin Hamiltonian being defined as H = −JS1·S2). Simple symmetry considerations about the overlap between the magnetic orbitals across the extended bis-bidentate L bridge in 3 and 4 account for their magnetic properties.  相似文献   

9.
《Polyhedron》2005,24(16-17):2588-2592
[{Ln(hfac)3}2{Ni(dpk)2(phen)}] (1Ln) and [{Ln(hfac)3}2{Ni(dpk)2(py)2}] (2Ln) were synthesized and characterized, where dpk = di-2-pyridyl ketoxmate and Ln = La, Tb, Dy, Ho, Er. The N–O groups from dpk bridged the central nickel(II) ion and terminal lanthanide(III) ions, giving a linear trinuclear array. Dc magnetic susceptibility measurements revealed that they did not possess appreciable intramolecular ferromagnetic or ferrimagnetic interaction. Ac magnetic susceptibility measurements clarified that frequency dependence of out-of-phase ac susceptibility was observed only for Dy derivatives 1Dy and 2Dy, which is regarded as an indication of single-molecule magnets.  相似文献   

10.
The reactivity of dinuclear niobium and tantalum imido complexes with the isocyanide compound 2,6-Me2C6H3NC has been studied. The trialkyl complexes [{NbR3(CH3CN)}2(μ-1,3-NC6H4N)], [{NbR3(CH3CN)}2(μ-1,4-NC6H4N)] and [{TaR3(CH3CN)}2(μ-1,4-NC6H4N)] (R=CH2SiMe3) gave [{Nb(η2-RCNAr)2R}2(μ-1,3-NC6H4N)] (1), [{Nb(η2-RCNAr)2R}2(μ-1,4-NC6H4N)] (2) and [{Ta(η2-RCNAr)2R}2(μ-1,4-NC6H4N)] (3) (R=CH2SiMe3; Ar=2,6-Me2C6H3), from the isocyanide insertion in two of the metal alkyl carbon bonds. The reaction of the isocyanide reagent with the di-alkyl mono-cyclopentadienyl derivatives [{Nb(η5-C5H4SiMe3)R2}2(μ-1,3-NC6H4N)] (R=Me, CH2Ph, CH2SiMe3), [{Nb(η5-C5H4SiMe3)R2}2(μ-1,4-NC6H4N)] (R=Me, CH2Ph (4), CH2SiMe3) and [{Ta(η5-C5Me5)(CH2SiMe3)2}2(μ-1,4-NC6H4N)] yielded [{Nb(η5-C5H4SiMe3)(η2-RCNAr)R}2(μ-1,3-NC6H4N)] (R=Me (5), CH2Ph (6), CH2SiMe3 (7)), [{Nb(η5-C5H4SiMe3)(η2-RCNAr)R}2(μ-1,4-NC6H4N)] (R=Me (8), CH2Ph (9), CH2SiMe3 (10)) and [{Ta(η5-C5Me5)(η2-Me3SiCH2CNAr)CH2SiMe3}2(μ-1,4-NC6H4N)] (11) (Ar=2,6-Me2C6H3), respectively, from a single insertion process. The reaction with the mono-alkyl complex [{Nb(η5-C5H4SiMe3)(Me)Cl}2(μ-1,4-NC6H4N)] gave [{Nb(η5-C5H4SiMe3)(η2-MeCNAr)Cl}2(μ-1,4-NC6H4N)] (12), produced from the isocyanide insertion in the metal-alkyl carbon bond. The alkyl-amido complex [{Nb(η5-C5H4SiMe3)(Me)NMe2}2(μ-1,4-NC6H4N)] gave, from the preferential isocyanide insertion in the metal-amide nitrogen bond, [{Nb(η5-C5H4SiMe3)(η2-Me2NCNAr)Me}2(μ-1,4-NC6H4N)] (13). The molecular structure of one of the alkyl precursors, [{Nb(η5-C5H4SiMe3)(CH2Ph)2}2(μ-1,4-NC6H4N)] (4), has been determined.  相似文献   

11.
The reactions of anionic molybdenum and tungsten cyanide cuboidal clusters with CuII and MnII salts afforded two new cyanide-bridged heterometallic coordination polymers with the composition [{Cu2(dien)2(CN)}2{Mo4Te4(CN)12}]?14.5H2O (1) and (H3O)3K[{Mn(H2O)2}2{Mn(H2O)2(NO3)}4{W4Te4(CN)12}2]·8H2O (2). The structures of these compounds were established by X-ray diffraction analysis. Compound 1 has a layered structure, in which the cuboidal cluster fragments {Mo4Te4(CN)12}6? are linked to the copper atoms of the dinuclear fragments {(H2O)(dien)Cu(μ-CN)Cu(dien)(H2O)} through the bridging CN groups. Coordination polymer 2 has a framework structure, in which the cluster fragments {W4Te4(CN)12}6? are linked to the manganese(II) aqua complexes of two types, viz., the dinuclear fragment {Mn(μ2-H2O)2Mn} and the tetranuclear cyclic fragment {(H2O)2Mn(μ2-NO3)}4, through the bridging CN groups.  相似文献   

12.
The coordination properties of new types of bidentate phosphane and arsane ligands with a narrow bite angle are reported. The reactions of [{Cp′′′Fe(CO)2}2(μ,η1:1‐P4)] ( 1 a ) with the copper salt [Cu(CH3CN)4][BF4] leads, depending on the stoichiometry, to the formation of the spiro compound [{{Cp′′′Fe(CO)2}231:1:1:1‐P4)}2Cu]+[BF4]? ( 2 ) or the monoadduct [{Cp′′′Fe(CO)2}231:1:2‐P4){Cu(MeCN)}]+[BF4]? ( 3 ). Similarly, the arsane ligand [{Cp′′′Fe(CO)2}2(μ,η1:1‐As4)] ( 1 b ) reacts with [Cu(CH3CN)4][BF4] to give [{{Cp′′′Fe(CO)2}231:1:1:1‐As4)}2Cu]+[BF4]? ( 5 ). Protonation of 1 a occurs at the “wing tip” phosphorus atoms, which is in line with the results of DFT calculations. The compounds are characterized by spectroscopic methods (heteronuclear NMR spectroscopy and IR spectrometry) and by single‐crystal X‐ray diffraction studies.  相似文献   

13.
Spin‐labelled compounds are widely used in chemistry, physics, biology and the materials sciences but the synthesis of stable high‐spin organic molecules is still a challenge. We succeeded in synthesising heteroatom analogues of the 1,1,2,3,3‐pentamethylenepropane (PMP) diradicals with two nitronyl nitroxide ( DR1 ) and with two iminonitroxide ( DR2 ) fragments linked through the C(sp2) atom of the nitrone group. According to magnetic susceptibility measurements, EPR data and ab initio calculations at the (8,6)CASSCF and (8,6)NEVPT2 levels, DR1 and DR2 have singlet ground states. The singlet–triplet energy splitting (2J) is low (J/k=?7.4 for DR1 and ?6.0 K for DR2 ), which comes from the disjoint nature of these diradicals. The reaction of [Cu(hfac)2] with DR1 gives rise to different heterospin complexes in which the diradical acts as a rigid ligand, retaining its initial conformation. For the [{Cu(hfac)2}2( DR1 )(H2O)] complex, sufficiently strong ferromagnetic interactions (J1/k=42.7 and J2/k=14.1 K) between two coordinating CuII ions and DR1 were revealed. In [{Cu(hfac)2}2( DR1 )(H2O)][Cu(hfac)2(H2O)], the very strong and antiferromagnetic (J/k=?416.1 K) exchange interaction between one of the coordinating CuII ions and DR1 is caused by the very short equatorial Cu?O bond length (1.962 Å).  相似文献   

14.
The reaction of [Pt2(μ-S)2(P-P)2] (P-P=2PPh3, 2PMe2Ph, dppf) [dppf=1,1-bis(diphenylphosphino)ferrocene] with cis-[M(C6F5)2(PhCN)2] (M=Ni, Pd) or cis-[Pt(C6F5)2(THF)2] (THF=tetrahydrofuran) afforded sulfide aggregates of the type [{Pt23-S)2(P-P)2}M(C6F5)2] (M=Ni, Pd, Pt). X-ray crystal analysis revealed that [{Pt23-S)2(dppf)2}Pd(C6F5)2], [{Pt23-S)2(PPh3)2}Ni(C6F5)2], [{Pt23-S)2(PPh3)2}Pd(C6F5)2] and [{Pt23-S)2(PMe2Ph)2}Pt(C6F5)2] have triangular M3S2 core structures capped on both sides by μ3-sulfido ligands. The structural features of these polymetallic complexes are described. Some of them display short metal-metal contacts.  相似文献   

15.
Solid heterospin compounds based on Cu(hfac)2 complexes with a new group of nitronyl nitroxides bearing different azine-N-oxide substituents at position 2 of the 2-imidazoline ring (Ln) were studied. The major factor responsible for the change in the magnetic characteristics of the [Cu(hfac)2L1] complex with triazine nitronyl nitroxide with temperature was shown to be the specific pairwise packing of heterospin molecules with the dominant antiferromagnetic exchange between the radical fragments of adjacent molecules. For complexes of Cu(hfac)2 with 1-oxoazin-2-yl-substituted nitronyl nitroxides L2 and L4, 7-membered metallocycles were obtained, although they form rarely. It was shown that polymer chains formed in the solid complex with spin-labeled pyrazine-N-oxide [(Cu(hfac)2)3(L3)2] due to the cross-linking of {(Cu(hfac)2)2(L3)2} binuclear fragments via the bridging [Cu(hfac)2].  相似文献   

16.
Two novel compounds of the formulae [{Cu(phen)2}2(μ-C2O4)][Cu(phen)2(μ-C2O4)NbO(C2O4)2]2 · 8H2O (1) and [{Cu(bpy)2}2(μ-C2O4)][Cu(bpy)2(μ-C2O4)NbO(C2O4)2]2 · 0.5bpy · 7H2O (2) (phen = 1,10-phenanthroline, bpy = 2,2′-bipyridine) have been prepared and characterized by single crystal X-ray diffraction, IR spectroscopy and magnetic susceptibility measurements. The molecular structure of both 1 and 2 consists of a discrete CuIICuII oxalate-bridged dinuclear [{Cu(L)2}2(μ-C2O4)]2+ cation (A unit) and two CuIINbV oxalate-bridged dinuclear [Cu(L)2(μ-C2O4)NbO(C2O4)2] anions (B units) (L = phen, bpy). In 1 a crystallographic inversion centre is located in the middle of the oxalate bridge of the A unit, whereas in 2 an analogous inversion centre is missing. In the A units the copper(II) atoms adopt a tetragonally elongated octahedral coordination with the equatorial planes being perpendicular to the mean planes of the oxalate bridge and parallel to each other. In both structures, similar one-dimensional motifs are generated through the ligand stacking interactions, with a difference that one free bipyridine molecule, present in 2, intercalates into one of the motifs. It is shown that the phenanthroline ligand, due to its ability of stacking through the central aromatic ring, causes longer intermolecular Cu?Cu distances than the bipyridine ligand. The magnetic susceptibility measurements (1.8–290 K) show the ferromagnetic exchange interaction between the copper(II) atoms in the A units of both compounds, with J = +5.9 cm−1 and +7.9 cm−1 for 1 and 2, respectively (J – the exchange parameter in the isotropic spin Hamiltonian HINT = −JS1 · S2).  相似文献   

17.
Addition of PPh2H and base to cis-[{Pd2(μ-Cl)2[μ-C((C6F5)=N(Me)]2}n] results in formation of a CP bond at the expense of a CF bond to give the title complex, the crystal structure of which has been determined.  相似文献   

18.
The selective formation of the dinuclear butterfly complexes [{Cp′′′Fe(CO)2}2(μ,η1:1‐E4)] (E=P ( 1 a ), As ( 1 b )) and [{Cp*Cr(CO)3}2(μ,η1:1‐E4)] (E=P ( 2 a ), As ( 2 b )) as new representatives of this rare class of compounds was found by reaction of E4 with the corresponding dimeric carbonyl complexes. Complexes 1 b and 2 b are the first As4 butterfly compounds with a bridging coordination mode. Moreover, first studies regarding the reactivity of 1 b and 2 b are presented, revealing the formation of the unprecedented As8 cuneane complexes [{Cp′′′Fe(CO)2}2{Cp′′′Fe(CO)}241:1:2:2‐As8)] ( 3 b ) and [{Cp*Cr(CO)3}441:1:1:1‐As8)] ( 4 ). The compounds are fully characterized by NMR and IR spectroscopy as well as by X‐ray structure analysis. In addition, DFT calculations give insight into the transformation pathway from the E4 butterfly to the corresponding cuneane structural motif.  相似文献   

19.
We synthesized 1-ethylimidazolyl-substituted nitronyl nitroxides, i.e., 2-(1-ethylimidazol-4-yl)- (L4Et) and 2-(1-ethylimidazol-5-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole 3-oxide-1-oxyl (L5Et). The stable radical L5Et is an ethyl analog of 2-(1-methylimidazol-5-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole 3-oxide-1-oxyl (L5Me) described earlier, the reaction of which with Cu(hfac)2 (hfac is 1,1,1,5,5,5-hexafluoropentane-2,4-dionate) leads to the formation of the [Cu(hfac)2(L5Me)2] jumping crystals. The reaction of Cu(hfac)2 with L5Et with reagent ratios 1: 2 and 1: 1 yields heterospin complexes [Cu(hfac)2(L5Et)2] and [Cu(hfac)2L5Et]2, respectively. X-ray diffraction study of the mononuclear complex [Cu(hfac)2(L5Et)2] determined that the compound has a packing similar to that of jumping crystals studied earlier, with the only difference being that the O...O contacts between neigh- boring nitroxide groups were found to be 0.3—0.5 Å longer than in [Cu(hfac)2(L5Me)2]. As a result of the lengthening of these contacts, [Cu(hfac)2(L5Et)2] crystals lack chemomechanical activi- ty. We found that when cooling crystals of binuclear complex [Cu(hfac)2L5Et]2 below 50 K, the antiferromagnetic exchange between unpaired electrons of the >N—?O groups of neighboring molecules leads to the full spin-pairing of the nitroxides, with only the Cu2+ ions contributing to the residual paramagnetism of the compound.  相似文献   

20.
The synthesis, structures, and magnetochemical data for the heterospin chain polymer complexes Cu(hfac)2LAll and Cu(hfac)2LBu·0.5Solv, where hfac is the hexafluoroacetylacetonate anion, LAll and LBu are 2-(1-allyl-1H-pyrazol-4-yl)- and 2-(1-butyl-1H-pyrazol-4-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide-1-oxyls, respectively, Solv is isopropylbenzene or tert-butylbenzene, were described. These polycrystalline solids were found to exhibit similar magnetic anomalies. Thus, the effective magnetic moment first decreases and then increases with temperature, resulting in the specific minimum in the curve μeff(T). The study of the magneto-structural correlations showed that the appearance of the minimum is attributed to different factors. For Cu(hfac)2LAll, this is the phase transition accompanied by the structural rearrangement of the exchange cluster >N—·O—CuII—O·—N<, which leads to a change in the energy of the exchange interaction between the unpaired electrons of the paramagnetic centers. By contrast, for Cu(hfac)2LBu·0.5PriPh and Cu(hfac)2LBu·0.5ButPh, the appearance of the minimum is a consequence of the coexistence of exchange interaction energies with opposite signs, while the structure of the solid phase remains unchanged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号