首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Polyhedron》2007,26(9-11):2243-2246
We report single crystal high-frequency electron paramagnetic resonance studies of two recently discovered half-integer Fe7 complexes: [Fe7O3(O2CBut)9(mda)3(H2O)3] (1) and [Fe7O4(O2CPh)11(dmem)2] (2). The obtained spectra confirm spin S = 5/2 ground states for both complexes. On the basis of detailed frequency and field orientation dependent studies, we find that complex 1 is a single-molecule magnet (uniaxial zero-field-splitting parameter, D < 0) while complex 2 is not (D > 0). The EPR linewidth for complex 1 is considerably narrower in comparison to spectra obtained for other single-molecule magnets, suggesting the possibility of reduced decoherence from nuclear spins (56Fe has no nuclear moment).  相似文献   

2.
The tris(2-chloromethyl-4-oxo-4H-pyran-5-olato-κ2O5,O4)iron(III), [Fe(kaCl)3], has been synthesized and characterized by the crystal structure analysis, magnetic susceptibility measurements, Mössbauer, and EPR spectroscopic methods. The X-ray single crystal analysis of [Fe(kaCl)3] revealed a mer isomer. The magnetic susceptibility measurements indicated the paramagnetic character in the temperature range of 2 K–298 K. The EPR and Mössbauer spectroscopy confirmed the presence of an iron center in a high-spin state. Additionally, the temperature-independent Mössbauer magnetic hyperfine interactions were observed down to 77 K. These interactions may result from spin–spin relaxation due to the interionic Fe3+ distances of 7.386 Å.  相似文献   

3.
The crystal structures and magnetic properties of the quaternary lanthanide oxides Ba6Ln2Fe4O15 (Ln=Pr and Nd) are reported. They crystallize in a hexagonal structure with space group P63mc and have the “Fe4O15 cluster” consisting of one FeO6 octahedron and three FeO4 tetrahedra. Measurements of the magnetic susceptibility, specific heat, and powder neutron diffraction reveal that this cluster behaves as a spin tetramer with a ferrimagnetic ground state of ST=5 even at room temperature. The cluster moments show a long-range antiferromagnetic ordering at 23.2 K (Ln=Pr) and 17.8 K (Nd), and the magnetic moments of the Ln3+ ions also order cooperatively. By applying the magnetic field (∼2 T), this antiferromagnetic ordering of the clusters changes to a ferromagnetic one. This result indicates that there exists a competition in the magnetic interaction between the clusters.  相似文献   

4.
Detailed magnetic susceptibility measurements on the polycrystalline complexes [Fe(phen)2(NCS)2] (phen = 1.10-phenanthroline) and [Fe(bipy)2(NCS)2] (bipy = 2,2′-bipyridine) have revealed a narrow hysteresis in both systems indicative of a first-order nature of the spin transition 5T2g(Oh) ? 1 Atg(Oh). The crystal quality, in particular crystal defects (through preparation or grinding), have been shown to influence strongly the spin transition behaviour.  相似文献   

5.
The crystal and magnetic structures of SrFe2+2(PO4)2 have been determined by neutron powder diffraction data at low temperatures (space group P21/c (no. 14); Z=4; a=9.35417(13) Å, b=6.83808(10) Å, c=10.51899(15) Å, and β=109.5147(7)° at 15 K). Two magnetic phase transitions were found at T1=7.4 K (first-order phase transition) and T2=11.4 K (second-order phase transition). The transition at T2 was hardly detectable by dc and ac magnetization measurements, and a small anomaly was observed by specific heat measurements. At T1, strong anomalies were found by dc and ac magnetization and specific heat. The structure of SrFe2(PO4)2 consists of linear four-spin cluster units, Fe2-Fe1-Fe1-Fe2. Below T1, the propagation vector of the magnetic structure is k=[0,0,0]. The magnetic moments of the inner Fe1-Fe1 atoms of the four-spin cluster unit are ferromagnetically coupled. The magnetic moment of the outer Fe2 atom is also ferromagnetically coupled with that of the Fe1 atom but with spin canting. The four-spin cluster units form ferromagnetic layers parallel to the [−101] plane, while these layers are stacked antiferromagnetically in the [−101] direction. Spin canting of the outer Fe2 atoms provides a weak ferromagnetic moment of about 1 μB along the b-axis. The refined magnetic moments at 3.5 K are 4.09 μB for Fe1 and 4.07 μB for Fe2. Between T1 and T2, a few weak magnetic reflections were observed probably due to incommensurate magnetic order.  相似文献   

6.
The title iron(II) complex, [Fe(CN)2(C15H23N3O2)]·H2O, is of interest to the spin‐crossover community because of its unusual temperature‐dependent magnetic behaviour as well as its relatively high relaxation temperature for the light‐induced spin‐crossover phenomenon. Structural modifications are strongly suspected to cause the unusual thermal spin‐crossover features. Recently, the high‐spin crystal structure has been reported but with an inadequate space group. In the present paper, the crystal structure is corrected by a new investigation, and some consequences for the structure–property relationships of this complex are discussed. The FeII ion is seven‐coordinate and lies on a twofold axis.  相似文献   

7.
Electron paramagnetic resonance transitions (EPR) in the middle Kramers doublet is observed for the first time in the 6A1 ground state of Fe(III) complex of tetraphenylporphine (TPP) diluted in the polycrystalline free base tetraphenylporphine (THHP2). The system shows the EPR spectra and resulting from several distinct species of high spin (Fe(III) TPP with various degress of rhombicity. The middle Kramers as absorptions are in general of much weaker intensity than the corresponding lowest Kramers absorptions, and their g values show marked systematic deviations from the calculated first order prediction. The deviation can be explained by carrying the Zeeman perturbation to the third order. The analysis also rendered it possible to determine the zero-field parameters D and E separately. The results indicate the similarity in the crystal field of the present system with that of cyctochrome P450.  相似文献   

8.
The electronic absorption spectrum of the Fe2+ ion doped in ammonium chloride has been studied at room and liquid air temperatures. The observed bands have been assigned transitions from the ground 6A1g(S) state to the excited 4A1g(4Eg), 4T1g(G) and 4T2g(G) states. The cubic field approximation with Dq = 675 cm?1, B = 645 cm?1 and C = 4.4 B is found to give a good fit to the observed band positions.It is further concluded that the site symmetry of the Fe3+ ion in the crystal is lowered from Oh to C4v symmetry at liquid air temperature.  相似文献   

9.
An extended Hückel high spin band approach is used to investigate the effects of oxygen octahedral distortions in the Fe3O2BO3 ludwigite. Owing to distortion, a 0.2 eV stabilizing gap (above the spin down Fermi level) is found to appear in a 1D sub-unit, formed by the strongly interacting Fe3+-Fe2+-Fe3+ triad. Through a detailed analysis of the crystal wave functions, the gap is found to be a result of 3d(σ)-3d(π) orbital mixing, which generates a narrow band for the extra (spin down) Fe2+ electron. Charge localization is obtained in the 1D sub-unit but not in the whole crystal (3D) calculation. It is suggested that the high barrier for electron hopping, experimentally found in the literature to occur around 220 K, be related to the 1D gap.  相似文献   

10.
An electron paramagnetic resonance (EPR) study of FeNbO4 powder samples in monoclinic phase (wolframite-type) at X-band (8.8–9.8 GHz), in the 90–300 K temperature range, is presented. For all the temperatures, the EPR spectrum shows a single line associated with Fe3+ ions. Changes in the lineshape of the EPR spectrum, which can be attributed to Fe2+ ions, are detected at low temperatures. This behavior can be ascribed to a strong magnetic dipolar interaction between Fe2+ and Fe3+ ions. The non-resonant microwave absorption techniques: magnetically-modulated microwave absorption spectroscopy (MAMMAS) and low-field microwave absorption spectroscopy (LFMAS), were used for a further knowledge on this material. MAMMAS response suggests also the presence of Fe2+ ions, that originates a change in microwave absorption regime for T < Tp (=140 K), associated with the presence of short-range magnetic correlations. LFMAS spectra showed a linear behavior with positive slope and non-hysteretic traces. The profiles obtained by plotting the slope vs. temperature of the LFMAS line are similar to those detected by the MAMMAS technique, confirming that both types of measurement show the same processes of absorption.  相似文献   

11.
FeIIFeIII2F8(H2O)2 and MnFe2F8(H2O)2, grown by hydrothermal synthesis (P ? 200 MPa, T = 450 or 380°C), crystallize in the monoclinic system with cell dimensions (Å): a = 7.609(5), b = 7.514(6), c = 7.453(4), β = 118.21(3)°; and a = 7.589(6), b = 7.503(8), c = 7.449(5), β = 118.06(3)°, and space group C2m, Z = 2. The structure is related to that of WO3 · 13H2O. It is described in terms of perovskite type layers of Fe3+ octahedra separated by Fe2+ or Mn2+ octahedra, or in terms of shifted hexagonal bronze type layers. Both compounds present a weak ferromagnetism below TN (157 and 156 K, respectively). Mössbauer spectroscopy points to an “idle spin” behavior for FeIIFeIII2F8(H2O)2: only Fe3+ spins order at TN, while the Fe2+ spins remain paramagnetic between 157 and 35 K. Below 35 K, the hyperfine magnetic field at the Fe2+ nuclei is very weak: Hhf = 47 kOe at T = 4.2 K. For MnFe2F8(H2O)2, Mn2+ spin disorder is expected at 4.2 K. This “idle spin” behavior is due to magnetic frustration.  相似文献   

12.
《Solid State Sciences》2007,9(5):440-450
The complex perovskite lead iron tungsten niobium oxide, Pb(Fe0.6W0.2Nb0.2)O3 (PFWN) which belongs to the class of disordered magnetoelectrics, has been studied by X-ray and neutron powder diffraction, magnetic and Mössbauer spectroscopic measurements. Structural, dielectric and magnetic properties of PFWN are presented and reviewed. Magnetic measurements indicate that the most important interactions are of antiferromagnetic nature yielding TN = 300 K, however, with indications of a reentrant spin glass behaviour below 20 K. The parameters of Mössbauer spectra also support the existence of the magnetic order and are consistent with the presence of high-spin Fe3+ cations located in the octahedral B-site. Rietveld refinements of diffraction data at different temperatures between 10 and 700 K have been carried out. The long-range structure of PFWN is cubic (space group Pm−3m) over the whole temperature interval. The Fe, W and Nb cations were found to be disordered over the perovskite B-sites. The Pb cations show a position disorder along the 〈111〉 direction shifting from their high-symmetry position. At the temperatures below TN, an antiferromagnetic arrangement of the magnetic moments of Fe3+ cations in the B-site is proposed in accordance with the antiferromagnetic properties of PFWN. The factors governing the observed nuclear and magnetic structures of PFWN are discussed and compared with those of pure Pb(Fe0.67W0.33)O3, Pb(Fe0.5Nb0.5)O3 and other quaternary Pb-based perovskites containing iron.  相似文献   

13.
Using two kinds of carboxylate ligands with small but significant differences in steric size, symmetric and asymmetric FeII and NiII cubanes have been synthesized in a controlled fashion. Fast sweeping pulsed field measurements showed magnetization hysteresis loops for two cubane‐type molecular complexes, [Ni4(μ‐OMe)4(O2CAr4F‐Ph)4(HOMe)8] and [Ni4(μ‐OMe)4(O2CArTol)4(HOMe)6], thus suggesting single‐molecule magnet behavior. To differentiate the magnetic properties between the symmetric and asymmetric cubanes, detailed electron paramagnetic resonance (EPR) measurements were performed. From the EPR data, taken at various frequencies and temperatures, zero‐field splitting parameters D, E, and other higher‐order parameters for both cubane samples were extracted. Compared to the symmetric Ni‐cubane, the asymmetric one shows an increase in the D and E values by about 20 %, thereby suggesting structural engineering effects on the magnetic properties. By using the magnetic parameters determined by EPR, a static magnetization curve at 2 K and a temperature dependence of the magnetic susceptibility were simulated. A good agreement between theoretical and experimental data confirms the validity of the values obtained from EPR measurements.  相似文献   

14.
Mössbauer spectroscopy and neutron diffraction studies have been carried out for the α-Li3Fe2(PO4)3−x(AsO4)x (x=1, 1.5, 2, 3) solid solution, potential candidate for the cathode material of the lithium secondary batteries. The crystal and magnetic structures of all these phases are based on the structural and magnetic model corresponding to the α-Li3Fe2(PO4)3 phosphate parent, but with some differences promoted by the arsenate substitution. The PO4 and AsO4 groups have a random distribution in the structure. In all compounds the coupling of the magnetic moments takes place in the (001) plane, but the value of the angle between the moments and the x direction decreases from 38.3° (α-Li3Fe2(AsO4)3) to 4.7° (α-Li3Fe2(PO4)2(AsO4)1). This rotation arises from the change in the tilt angle between the Fe(1)O6 and Fe(2)O6 crystallographically and magnetically independent octahedra in the structures, and affects the effectiveness of the magnetic exchange pathways. The ordering temperature TN decreases with the increase of phosphate amount in the compounds. The existence of a phenomenon of canting and the evolution of the ferrimagnetic behavior in this solid solution is also discussed.  相似文献   

15.
The reaction of 4‐(1,2,4‐triazol‐4‐yl)ethanesulfonate ( L ) with Zn2+, Cu2+, Ni2+, Co2+, and Fe2+ gave a series of analogous neutral trinuclear complexes with the formula [M3(μ‐ L )6(H2O)6] ( 1 – 5 ). These compounds were characterized by single‐crystal X‐ray diffraction, thermogravimetry, and elemental analysis. The magnetic properties of compounds 2 – 5 were studied. Complexes 2 – 4 show weak antiferromagnetic superexchange, with J values of ?0.33 ( 2 ), ?9.56 ( 3 ), and ?4.50 cm?1 ( 4 ) (exchange Hamiltonian H=?2 J (S1S2+S2S3)). Compound 5 shows two additional crystallographic phases ( 5 b and 5 c ) that can be obtained by dehydration and/or thermal treatment. These three phases exhibit distinct magnetic behavior. The Fe2+ centers in 5 are in high‐spin (HS) configuration at room temperature, with the central one exhibiting a non‐cooperative gradual spin transition below 250 K with T1/2=150 K. In 5 b , the central Fe2+ stays in its low‐spin (LS) state at room temperature, and cooperative spin transition occurs at higher temperatures and with the appearance of memory effect (T1/2↑=357 K and T1/2↓=343 K). In the case of 5 c , all iron centers remain in their HS configuration down to very low temperatures, with weak antiferromagnetic coupling (J=?1.16 cm?1). Compound 5 b exhibits spin transition with memory effect at the highest temperature reported, which matches the remarkable features of coordination polymers.  相似文献   

16.
The influence of Zn-doping on the crystal structure and magnetic properties of the spin ladder compounds La2Cu2O5 (4-leg) and La8Cu7O19 (5-leg) have been investigated. The La2(Cu1−xZnx)2O5 and La8(Cu1−xZnx)7O19 solid solutions were obtained as single phases with x=0-0.1 via the solid-state reaction method in the temperature range between 1005-1010 °C and 1015-1030 °C in oxygen and air atmospheres, respectively. The lattice parameters a and c of the monoclinic crystal structures as well as the unit cell volume V increase with increasing x, while b and β decrease for both series. The magnetic susceptibilities χ of both series show a very similar behavior on temperature as well as on Zn-doping, which is supposed to be due to the similar Cu-O coordination in both La2Cu2O5 and La8Cu7O19. For low Zn-doping (x?0.04), a spin-chain like behavior is found. This quasi-one-dimensional behavior is strongly suppressed in both series for x?0.04. Here, the maximum (characteristic for spin chains) in χ(T) disappears and χ(T) decreases monotonically with increasing temperature.  相似文献   

17.
EPR measurements between 98 and 298 K on single crystal of Ni(ClO4)2·6H2O have indicated the appearance of a rhombic component in the axial crystal field at Ni2+ sites at Tc = 224 K, confirming a phase transition first reported by Chaudhuri from magnetic susceptibility measurements. Temperature variations of g, D and E parameters were determined. IR spectra at room and liquid nitrogen temperatures are consistent with our EPR results.  相似文献   

18.
The new calcium iron iridium hydrogarnet Ca3(Ir2–xFex)(FeO4)2–x(H4O4)1+x (0 ≤ x ≤ 1) was obtained by hydrothermal synthesis under strongly oxidizing alkaline conditions. The compound adopts a garnet‐like crystal structure and crystallizes in the acentric cubic space group I4 3d (no. 220) with a = 12.5396(6) Å determined at T = 100 K for a crystal with a refined composition Ca3(Ir1.4Fe0.6)(FeO4)1.4(O4H4)1.6. Iridium and iron statistically occupy the octahedrally coordinated metal position, the two crystallographically independent tetrahedral sites are partially occupied by iron. Hydroxide groups are found to cluster as hydrogarnet defects, i.e. partially substituting oxide anions around the empty tetrahedral metal sites. The presence of hydroxide ions was confirmed by infrared spectroscopy and the hydrogen content was quantified by carrier gas hot extraction; the overall composition was verified by energy dispersive X‐ray spectroscopy. The structure model is supported by 57Fe‐Mössbauer spectroscopic data evidencing different Fe sites and a magnetic ordering of the octahedral iron sublattice at room temperature. The thermal decomposition proceeds via three steps of water loss and results in Ca2Fe2O5, Fe2O3 and Ir. Mössbauer and magnetization data suggest magnetic order at ambient temperature with complex magnetic interactions.  相似文献   

19.
For comparison with the Mn4+/Mn3+ oxoperovskites at the crossover from localized to itinerant behavior of the σ-bonding e electrons, the electronic properties of three oxygen non-stoichiometric, mixed-valent Fe4+/Fe3+ oxoperovskites were explored by measuring their resistivity ρ(T), thermoelectric power α(T), and magnetic susceptibility χ(T). Oxidation of Ca2Fe2O5 by annealing in ozone progresses by oxygen insertion to give conductive CaFeO3 perovskite clusters in a localized-electron, weakly oxidized brownmillerite Ca2Fe2O5+δ matrix. Removal of 0.12 oxygen per formula unit from La1/3Sr2/3FeO3 lowers somewhat its cooperative disproportionation reaction, and fivefold-coordinated ions neighboring oxygen vacancies in the more ionically bonded slabs act as donors to the covalently bonded Fe(V)O6 planes. Single-crystal SrFeO2.83 exhibited bad-metal behavior with superparamagnetic, electron-rich fluctuations below 240 K that, on cooling below 190 K, become progressively trapped by the oxide-ion vacancies as an immobile second phase; long-range antiferromagnetic order is stabilized below a TN≈60 K.  相似文献   

20.
Magnetic properties of the lyonsite-type phase, Cu3.9Fe3.4V6O24, that has been synthesized by a standard solid-state reaction method, were investigated by dc magnetization and electron paramagnetic resonance (EPR) techniques. Complex magnetic behavior and transition to the antiferromagnetic phase at liquid helium temperature have been revealed by measurements of dc susceptibility in ZFC and FC modes in the 2–300 K temperature range as well as static magnetization in magnetic fields up to 70 kOe. Strong antiferromagnetic interactions in clusters or chains of magnetic ions even at high temperatures has been deduced from the obtained value of the effective magnetic moment that was significantly smaller than expected for nominal valences of iron and copper ions. The presence of antiferromagnetic iron dimers in the high-temperature range, critical slowing down of spin fluctuations on approaching Neel temperature and the existence of magnetically isolated iron ions in the antiferromagnetic phase has been suggested from the temperature dependence of EPR parameters (g-factor, linewidth, integrated intensity) obtained by fitting the experimental spectrum with Lorentzian lineshape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号