共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanocrystalline magnetic particles of Ni0.8−xZn0.2MgxFe2O4 ferrites with x lying between 0.0 and 0.8 were synthesized using metal nitrates and freshly extracted egg-white. The synthesized powders were characterized using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and transmission electron microscopy (TEM). With increasing magnesium concentration, the lattice constant increases while X-ray density decreases. The average crystallite size determined from XRD data using Scherrer formula lie in the range of 35–59 nm. TEM image shows spherically agglomerated particles with average crystallite size agreed well with that obtained from XRD. Magnetic properties measured at room temperature by vibrating sample magnetometer (VSM) reveal a decrease in saturation magnetization up to Mg content of 0.6. In agreement with FT-IR results, the unexpected increase in the magnetization at Mg content of 0.8 can be attributed to the tendency of Mg2+ ions to occupy the tetrahedral site. The decrease in the value of coercivity with increasing magnesium content can be explained based on the magneto-crystalline anisotropy. 相似文献
2.
Mona Mouallem-Bahout Sarah Bertrand Octavio Peña 《Journal of solid state chemistry》2005,178(4):1080-1086
Nanocrystalline single-phase samples of Zn1−xNixFe2O4 ferrites (0<x<1) have been obtained via a soft-chemistry method based on citrate-ethylene glycol precursors, at a relatively low temperature (650 °C). The influence of the nickel and zinc contents as well as that of heat treatments were investigated by means of X-ray powder diffraction, Brunauer-Emmett-Teller (BET) surface area, scanning electron microscopy (SEM) and Fourier Transform Infrared (FTIR) Spectroscopy. Higher Ni content increases the surface areas, the largest one (∼20 m2/g) being obtained for NiFe2O4 annealed at 650 °C for 15 h. For all compositions, the surface area decreases for prolonged annealing at 650 °C and for higher annealing temperatures. Those results were correlated to the particle size evolution; the smallest particles (∼50 nm) observed in the NiFe2O4 sample (650 °C, 15 h) steadily increase as Ni ions were replaced by Zn, reaching ∼100 nm in the ZnFe2O4 sample (650 °C, 15 h). For all the Zn1−xNixFe2O4 samples and, whatever the heat treatments was, the FTIR spectra show two fundamental absorption bands in the range 650-400 cm−1, characteristics of metal vibrations, without any superstructure stating for cation ordering. The highest ν1-tetrahedral stretching, observed at ∼615 cm−1 in NiFe2O4, shifts towards lower values with increasing Zn, whereas the ν2-octahedral vibration, observed at 408 cm−1 in NiFe2O4, moves towards higher wavenumbers, reaching 453 cm−1 in ZnFe2O4. 相似文献
3.
Nanosize nickel-substituted cobalt ferrites were prepared using aerosol route and characterized by TEM, XRD, magnetic and Mössbauer spectroscopy. The particle size of as obtained samples was found to be ∼10 nm which increases upto ∼80 nm on annealing at 1200 °C. The unit cell parameter ‘a’ decreases linearly with the nickel concentration due to smaller ionic radius of nickel. The saturation magnetization for all the samples after annealing at 1200 °C lies in the range 47.6-84.5 emu/g. Room temperature Mössbauer spectra of as obtained samples exhibit a broad doublet, suggesting super paramagnetic nature of the sample. The broad doublet is further resolved into two doublets corresponding to the iron atoms residing at the surface and internal regions of the particle. The samples annealed at 1200 °C showed broad sextet, which is resolved into two sextets, corresponding to tetrahedrally and octahedrally coordinated Fe cations. Cation distribution calculated using XRD and Mössbauer data indicates a decrease in Fe3+(oct.)/Fe3+(tet.) ratio with increasing nickel concentration. 相似文献
4.
The influence of Zn-doping on the crystal structure and magnetic properties of the spin ladder compounds La2Cu2O5 (4-leg) and La8Cu7O19 (5-leg) have been investigated. The La2(Cu1−xZnx)2O5 and La8(Cu1−xZnx)7O19 solid solutions were obtained as single phases with x=0-0.1 via the solid-state reaction method in the temperature range between 1005-1010 °C and 1015-1030 °C in oxygen and air atmospheres, respectively. The lattice parameters a and c of the monoclinic crystal structures as well as the unit cell volume V increase with increasing x, while b and β decrease for both series. The magnetic susceptibilities χ of both series show a very similar behavior on temperature as well as on Zn-doping, which is supposed to be due to the similar Cu-O coordination in both La2Cu2O5 and La8Cu7O19. For low Zn-doping (x?0.04), a spin-chain like behavior is found. This quasi-one-dimensional behavior is strongly suppressed in both series for x?0.04. Here, the maximum (characteristic for spin chains) in χ(T) disappears and χ(T) decreases monotonically with increasing temperature. 相似文献
5.
Crystal structures and magnetic properties of metal telluromolybdates Co1−xZnxTeMoO6 (x=0.0, 0.1,…,0.9) are reported. All the compounds have an orthorhombic structure with space group P21212 and a charge configuration of M2+Te4+Mo6+O6. In this structure, M ions form a pseudo-two-dimensional lattice in the ab plane. Their magnetic susceptibility measurements have been performed in the temperature range between 1.8 and 300 K. The end member CoTeMoO6 shows a magnetic transition at 24.4 K. The transition temperature for solid solutions rapidly decreases with increasing x and this transition disappears between x=0.4 and 0.5, which is corresponding to the percolation limit for the square-planer lattice. From the magnetization, specific heat, and powder neutron diffraction measurements, it is found that the magnetic transition observed in the CoTeMoO6 is a canted antiferromagnetic ordering of Co2+ ions. The antiferromagnetic component of the ordered magnetic moment (3.12(3)μB at 10 K) is along the b-axis. In addition, there exists a small ferromagnetic component (0.28(3)μB) along the a-axis. 相似文献
6.
E. Malicka A. Wa?kowska T. Mydlarz D. Kaczorowski 《Journal of solid state chemistry》2008,181(8):1970-1976
Single crystals of Zn1−xSbxCr2−x/3Se4 based on the ZnCr2Se4 spinel, which is known to exhibit interesting magnetic and electronic transport properties, have been prepared by solid state reaction from the appropriate selenides. Three compounds of different Sb content (x=0.11, 0.16, and 0.20) were studied by X-ray diffraction, X-ray photoelectron scattering technique and macroscopic magnetic measurements with the aim to determine (i) stability of the cubic symmetry and (ii) influence of the Sb admixture on the magnetic properties. The results show that the Sb3+ and Zn2+ ions share the tetrahedral sites in the spinel structure, while the Cr3+ions carrying magnetic moments, are located in the octahedral sites. The X-ray photoelectron spectroscopy (XPS) data indicate that in this series of compounds the chromium ions have a 3d3 electronic configuration. The three samples studied order antiferromagnetically at low temperatures, with the magnetic characteristics being hardly altered with respect to those reported for the parent ZnCr2Se4 compound. 相似文献
7.
Siân E. Dutton Peter D. Battle Florent Tonus 《Journal of solid state chemistry》2008,181(9):2217-2226
Polycrystalline samples of the n=1 Ruddlesden-Popper system Pr3−xSr1+xCrNiO8 have been synthesized over the composition range 0.0<x?1.0 either by the ceramic method or from solution. They have been characterized by an appropriate combination of diffraction methods (X-ray, neutron and electron) and magnetometry (d.c. and a.c.). All compositions having x>0.1 adopt the tetragonal space group I4/mmm; Pr2.9Sr1.1CrNiO8 adopts the orthorhombic space group Fmmm. There is no evidence of Cr/Ni cation ordering in any composition. A maximum in the zero-field cooled magnetic susceptibility is observed at a temperature Tf that decreases with increasing Sr content; 52?Tf (K)?13. The frequency dependence of Tf observed in a.c. susceptibility measurements, together with the analysis of neutron diffraction data, suggests that the atomic magnetic moments in these compositions adopt a spin-glass-like state below Tf. 相似文献
8.
Marcella Bini Pietro Galinetto Stefania Ferrari Vincenzo Massarotti 《Journal of solid state chemistry》2009,182(7):1972-1981
Different solid state and sol-gel preparations of undoped and Mn substituted cathode material LiFePO4 are investigated. Li3PO4, Fe2P2O7 and Li4P2O7 are detected and quantified by XRPD only in solid state synthesis. In addition, micro-Raman spectra reveal low amount of different iron oxides clusters. EPR data, combined with the results of magnetization measurements, evidence signals from Fe3+ ions in maghemite nanoclusters, and in Li3Fe2(PO4)3. The sol-gel synthesis, showing the lowest amount of impurity phases, seems the most suitable to obtain a promising cathode material. The structural refinement gives new insights into the cation distribution of the Mn doped triphylite structure: (i) about 85% of Mn2+ ions substitutes Fe2+, the remaining 15% being located on the Li site, thus suggesting a structural disorder also confirmed by EPR and micro-Raman results; (ii) Mn ions on the Li site are responsible for the observed slight cell volume expansion. 相似文献
9.
Microwave assisted combustion method was used to produce nanocrystalline cobalt doped zinc ferrite, CoxZn1−xFe2O4, from stoichiometric mixture of (Co(NO3)2·6H2O), (Fe(NO3)3·9H2O), (Zn(NO3)2·6H2O), and urea (CO(NH2)2) as a fuel. The structural, morphological and magnetic properties of the products were determined by X-ray powder diffractometry (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM) respectively. The average crystallite sizes obtained from XRD were between 35 and 39 nm. Magnetization measurements indicate that samples with less Co content have superparamagnetic behavior at room temperature. When the Co substitution increases the saturation magnetization due to the magnetic character of the Co cations substituting the non-magnetic Zn and coercivity also increase due to anisotropic nature of cobalt. The CoxZn1−xFe2O4 nanocrystals exhibit typical features of an assembly of magnetic particles with a distribution of blocking temperatures and indicate the spin-glass behavior. 相似文献
10.
The microstructure and phase stability of nanocrystalline mixed oxide LuxCe1−xO2−y (x=0-1) are described. Nano-sized (3-4 nm) oxide particles were prepared by the reverse microemulsion method. Morphological and structural changes upon heat treatment in an oxidizing atmosphere were studied by transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman and Yb3+ emission spectroscopy, the latter ion being present as an impurity in the Lu2O3 starting material. Up to 950 °C, the samples were single phase, with structure changing smoothly with Lu content from fluorite type (F) to bixbyite type (C). For the samples heated at 1100 °C phase separation into coexisting F- and C-type structures was observed for 0.35<x<0.7. It was also found that addition of Lu strongly hinders the crystallite growth of ceria during heat treatment at 800 and 950 °C. 相似文献
11.
C. Lepoittevin S. Malo N. Barrier G. Van Tendeloo 《Journal of solid state chemistry》2008,181(10):2601-2609
Two-ordered perovskites, Bi1/3Sr2/3FeO2.67 and Bi1/2Ca1/2FeO2.75, have been stabilized and characterized by transmission electron microscopy, Mössbauer spectroscopy and X-ray powder diffraction techniques. They both exhibit orthorhombic superstructures, one with a≈b≈2ap and c≈3ap (S.G.: Pb2n or Pbmn) for the Sr-based compound and one with a≈b≈2ap and c≈8ap (S.G.: B222, Bmm2, B2mm or Bmmm) for the Ca-based one. The high-resolution transmission electron microscopy (HRTEM) images evidence the existence of one deficient [FeOx]∞ layer, suggesting that Bi1/3Sr2/3FeO2.67 and Bi1/2Ca1/2FeO2.75 behave differently compared to their Ln-based homolog. The HAADF-STEM images allow to propose a model of cation ordering on the A sites of the perovskite. The Mössbauer analyses confirm the trivalent state of iron and its complex environment with three types of coordination. Both compounds exhibit a high value of resistivity and the inverse molar susceptibility versus temperature curves evidence a magnetic transition at about 730 K for the Bi1/3Sr2/3FeO2.67 and a smooth reversible transition between 590 and 650 K for Bi1/2Ca1/2FeO2.75. 相似文献
12.
Anna Lashtabeg John Bradley Graeme Auchterlonie 《Journal of solid state chemistry》2010,183(5):1095-1101
The aim of this work was to determine structural parameters of the Y10−xLaxW2O21 (x=0-10) solid solution series and investigate their electric properties. Crystallographic data shows a gradual increase in symmetry with increasing La content, as the structure evolves from orthorhombic, Y10W2O21, towards the pseudo-cubic structure of Y5La5W2O21. The solubility limit of La2O3 was found to be 50% (x=5). Above this level two phases were observed, La6W2O15 and (La,Y)10+xW2−xO21−δ. The conductivity of Y rich samples was very low, with σ of the order 2×10−5-5×10−5 S cm−1 at 1000 °C, whilst ionic conductivity was observed for most La rich doped samples. The highest conductivity was observed for La10W2O21 and its doped analogues, at 1×10−3-5×10−3 S cm−1 at 1000 °C. Unit cell parameters were determined as a function of temperature from 0 to 1000°C, and thermal expansion of these materials was determined from temperature studies carried out at the Australian Synchrotron facility in Melbourne, Victoria, Australia. 相似文献
13.
MgAl2O4 was successfully used as a crystalline host network for the synthesis of nickel-based nano cyan refractory ceramic pigments. Different compositions of NixMg1−xAl2O4 (0.1 ? x ? 0.8) powders have been prepared by using a low temperature combustion reaction (LTCR) of the corresponding metal nitrates with urea (U) as a fuel at 300 °C in an open air furnace. The as-synthesized samples were characterized by thermal analysis (TG-DTG/DTA), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). UV-Vis and diffuse reflectance spectroscopy (DRS) using CIE- L∗a∗b∗ parameters methods have been used for color measurements. The results show that the NixMg1−xAl2O4 samples are the crystalline phase with a particle size of 8.85-43.66 nm in the temperature range 500-1200 °C. The density, particle size, shape and color are determined for all the prepared samples with different calcination times and temperatures. 相似文献
14.
The KxBa1−xGa2−xGe2+xO8 (x=0.6−1.0) solid solutions undergo a structural phase transition that has a significant effect on their sintering behavior and their microwave dielectric properties. The crystal structures of both phases within the solid-solution region were determined by the Rietveld method using powder X-ray diffraction data. We found that the low-temperature-stable phase is isostructural with the pseudo-orthorhombic KGaGe3O8 (space group P21/a), while the high-temperature-stable phase has a typical monoclinic feldspar structure (space group C2/m). Due to the topological differences between the two structures, the T-O bonds within the tetrahedra must be partially recombined to make a new framework, which causes an endothermic effect during the P21/a to C2/m phase transition. The correlation between the crystal structures, the microwave dielectric properties and the phase-transition behaviors were discussed in terms of the crystallographic features, the lattice parameters, and the strain-induced anisotropic peak-broadening. 相似文献
15.
The effect of substitution of the cation Cr by Ti in Cr5Te8 has been investigated with respect to its crystal structure, magnetic properties, and electronic structure. The compounds Cr5−xTixTe8 (x=0, 0.5, 1, 1.5, 1.85, 2, 3, 4, 5) were synthesized at elevated temperatures followed by slow cooling the samples to room temperature. The crystal structures have been refined with X-ray powder diffraction data with the Rietveld method. Three structural modifications are identified: monoclinic with space group F2/m for Cr5−xTixTe8 (x=0, 0.5, 1, 1.5, 1.85), trigonal supercell with space group P-3m1 for Cr5−xTixTe8 (x=2, 3), and trigonal basic cell with space group P-3m1 for Cr5−xTixTe8 (x=4, 5). The structures of all these phases are related to the NiAs structure with full and deficient metal layers stacking alternatively along the c-axis.The irreversibility in the field-cooled/zero-field-cooled magnetization with low field depends strongly on the Ti concentration x. Four types of magnetic states are distinguished: re-entrant ferromagnet for m-Cr5Te8, cluster-glass for m-Cr4.5Ti0.5Te8 and m-Cr4TiTe8, antiferromagnetic for m-Cr3.5Ti1.5Te8, and spin-glass for tr-Cr3Ti2Te8, tr-Cr2Ti3Te8, and Cr0.25TiTe2.Accompanying spin polarized scalar-relativistic Korringa-Kohn-Rostoker band-structure calculations strongly support the observation that the crystallographic sites in the full metal layers are preferentially occupied and predict that Ti atoms have the preference to occupy the full metal layers. These compounds are predicted metallic. Results for the spin-resolved DOS and magnetic moments on each crystallographic sites are presented. 相似文献
16.
Mónica Martos Beatriz Julián Eloisa Cordoncillo 《Journal of solid state chemistry》2007,180(2):679-687
Doped-rutile has been traditionally used in ceramic pigments for its intense optical properties. In this paper, we compare the classical ceramic synthesis of Ti1−2xNbxNixO2−x/2 system with the sol-gel methodology, which allows a reduction of the anatase-rutile transformation temperature. The composition was optimised in order to obtain a unique rutile phase with the minimum amount of pollutant Ni(II) and enhanced chromatic coordinates. Incorporation of the doping ions in the rutile structure was corroborated by XRD and Rietveld refinements. The species responsible for the colour mechanism were studied by different techniques. UV-VIS spectroscopy showed the characteristic features of Ni2+ ions, whose existence was corroborated by EPR and magnetic measurements. From these results, (Ni,Nb)doped-TiO2 powder samples can be now shaped as thin films, monoliths, etc. by using sol-gel methodology without modifying their properties. This study introduces new possibilities of coloured TiO2-based solid solutions in new combined advanced applications (colouring agent and photocatalyst, etc.). 相似文献
17.
Karl R. Whittle Lachlan M.D. Cranswick Ian P. Swainson 《Journal of solid state chemistry》2009,182(3):442-3618
The crystal structures of the compounds La2−xYxZr2O7 and La2−xYxHf2O7 with x=0.0, 0.4, 0.8, 1.2, 1.6, and 2.0 have been studied using neutron powder diffraction and electron microscopy to determine the stability fields of the pyrochlore and fluorite solid solutions. The limits of pyrochlore stability in these solid solutions are found to be close to La0.8Y1.2Zr2O7 and La0.4Y1.6Hf2O7, respectively. In both systems the unit cell parameter is found to vary linearly with Y content across those compositions where the pyrochlore phase is stable, as does the x-coordinate of the oxygen atoms on the 48f (x,,) sites. In both systems, linear extrapolations of the pyrochlore data suggest that the disordering is accompanied by a small decrease in the lattice parameter of approximately 0.4%. After the pyrochlore solid solution limit is reached, a sharp change is observed from x∼0.41 to 0.375 as the disordered defect fluorite structure is favoured. Electron diffraction patterns illustrate that some short-range order remains in the disordered defect fluorite phases. 相似文献
18.
The BaIr1−xMnxO3 (0.0≤x≤1.0) solid solutions were synthesized by using the solid-state chemical method and high pressure sintering in the pressure range 0-5 GPa. According to the pressure-composition “phase diagram” at 1000 °C, the 9M BaIr1−xMnxO3 transforms to the 6M form at 5 GPa and x≤1/6. In the x range 0.5-1.0, it transforms to the 9R form in a large pressure range. For the 9M BaIrO3, the Mn ions substitution for Ir ions enhances the semiconducting property, and reduces the weak ferromagnetism. When x is larger than 1/3, the 9M/9R BaIr1−xMnxO3 behave spin-glass-like state at low temperature, with the glass transition temperature Tg about 60 K. For the 6M BaIrO3, the Mn ions doping results in that it transforms to insulator and spin-glass-like magnetism from the initial paramagnetic metal. 相似文献
19.
Nathaniel L. Henderson Peter Schiffer Raymond E. Schaak 《Journal of solid state chemistry》2010,183(3):631-603
Europium titanate, EuTiO3, is a paraelectric/antiferromagnetic cubic perovskite with TN=5.5 K. It is predicted that compressive strain could induce simultaneous ferroelectricity and ferromagnetism in this material, leading to multiferroic behavior. As an alternative to epitaxial strain, we explored lattice contraction via chemical substitution of Eu2+ with the smaller Ca2+ cation as a mechanism to tune the magnetic properties of EuTiO3. A modified sol-gel process was used to form homogeneously mixed precursors containing Eu3+, Ca2+, and Ti4+, and reductive annealing was used to transform these precursors into crystalline powders of Eu1−xCaxTiO3 with x=0.00, 0.05, 0.10, 0.15, 0.25, 0.35, 0.50, 0.55, 0.60, 0.65, 0.80, and 1.00. Powder XRD data indicated that a continuous Eu1−xCaxTiO3 solid solution was readily accessible, and the lattice constants agreed well with those predicted by Vegard's law. SEM imaging and EDS element mapping indicated a homogeneous distribution of Eu, Ca, and Ti throughout the polycrystalline sample, and the actual Eu:Ca ratio agreed well with the nominal stoichiometry. Measurements of magnetic susceptibility vs. temperature indicated antiferromagnetic ordering in samples with x≤0.60, with TN decreasing from 5.4 K in EuTiO3 to 2.6 K in Eu0.40Ca0.60TiO3. No antiferromagnetic ordering above 1.8 K was detected in samples with x>0.60. 相似文献
20.
The crystal structure of the Zr1−xYxNiSn half-Heusler solid solutions is synthesized and their crystal structure is determined. Electrical resistivity and thermoelectric Seebeck coefficient are measured in the 80-380 K temperature range, whereas magnetic susceptibility is measured at 290 K. It is established that substitution of Zr host atoms by Y in the ZrNiSn intermetallic semiconductor is equivalent to doping by acceptor impurities. Self-consistent ab initio calculations, based on the full potential local orbital (FPLO) minimum basis method, are performed to investigate the electronic and thermoelectric properties of these alloys. Spin polarized within the framework of the coherent potential approximation (CPA) are included. 相似文献