首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Five new silver(I) complexes [Ag2(L2)2](BF4)2·CH3CN·CH3OH (1), [Ag(L2)(CF3SO3)] (2), [Ag(L3)]ClO4·CH3OH (3), [Ag2(L3)2](CF3SO3)2·CH3CN·CH3OH·H2O (4) and [Ag(L3)]PF6·2CH3CN (5) [L2=1,3,5-tris(2-pyridylmethoxyl)benzene, L3=1,3,5-tris(3-pyridylmethoxyl)benzene] were synthesized and characterized by single crystal X-ray diffraction analyses. In complexes 1-5, ligands L2 and L3 show different conformations and act as three-connectors, while the Ag(I) atom serves as three-connecting node to result in the formation of 2D and 3D frameworks. Complexes 1 and 2 with different counteranions have similar 2D network structure with the same (4,82) topology. Complex 3 has a 3D structure with (10,3)-a topology while complexes 4 and 5 have the same 2D (6,3) topological structure. The results showed that the structure of organic ligands and counteranions play subtle but important role in determining the structure of the complexes. In addition, the photoluminescence and anion-exchange properties of the complexes were investigated in the solid state at room temperature.  相似文献   

3.
The reaction of silver(I) with 1,2-bis[1-(pyridin-2-yl)ethylidene]hydrazine (bpeh) and N,N-bis(pyridin-2-ylmethyl)amine (bpma) in the presence of Na(sac) (sac = saccharinate) yielded [Ag2(sac)2(bpeh)] (1) and [Ag(sac)(bpma)]n (2) with conformational chirality. Both complexes have been characterized by elemental analysis, IR, thermal analysis and X-ray single crystal diffraction. Complex 1 displays a binuclear composition, in which each silver(I) ion is bound to one monodentate sac ligand and one of the bidentate pyridylimino groups of the bpeh ligand in a distorted trigonal coordination geometry. Complex 2 is a one-dimensional helical polymer, in which silver(I) centers are bridged by tridentate bpma ligands, and each silver(I) ion is coordinated in a distorted tetrahedral geometry by one monodentate sac ligand, a bidentate pyridylamine group of one bpma ligand, and a py group of another bpma ligand. Weak intermolecular C–H?O hydrogen bonds and C–H?π interactions lead to assembly of 1 and 2 into three-dimensional supramolecular frameworks. Spectral and thermal analysis data for 1 and 2 are in agreement with the crystal structures. In addition, both complexes in the solid state display intraligand π–π∗ fluorescence.  相似文献   

4.
Two new coordination polymers, [Ag2(barb)(pipet)]n (1) and {Na3[Ag2(barb)2](pippr)·2H2O}n (2) (where H2barb, pipet and Hpippr are 5,5-diethylbarbituric acid, N-piperidineethanol and 1,3-bis(4-piperidyl)propane, respectively) have been synthesized and characterized by elemental analysis, IR, thermal analysis and X-ray single-crystal diffraction techniques. Silver(I) ions in complexes 1 and 2 are bridged by barb dianions, leading to one-dimensional coordination polymers. In 1, the barb ligand acts as a tetradentate bridging ligand, while in 2 as a bidendate bridging ligand. The pipet ligand behaves as a bidentate chelating donor, whereas the pippr anion is not involved in coordination and remains as a counter-ion. The one-dimensional chains of 1 and 2 are further extended into supramolecular networks. Spectral and thermal analysis data for 1 and 2 are in agreement with the crystal structures.  相似文献   

5.
New disilver(I) methanedisulfonates complexes {CH2(SO3)2Ag2·[P(OMe)3]n} (n = 2, 2a; n = 4, 2b; n = 6, 2c) were prepared by reacting [CH2(SO3)2Ag2], which could be synthesized from methanedisulfonic acid and Ag2CO3 in water, with trimethylphosphite in dichloromethane. The molecular structure of 2a was determined using X-ray single crystal analysis. Complex 2a exhibits an infinite chain structure with eight-membered rings (AgOSOAgOSO) fully interconnected by the third sulfonic O atoms. Complex 2b was used to deposit silver films by metal organic chemical vapor deposition (MOCVD) for the first time. The silver film obtained was characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersion X-ray analysis (EDX).  相似文献   

6.
Synthesis, structures, and catalysis studies of gold(I) complexes of N-heterocyclic carbenes namely, a di-O-functionalized [1-(2-hydroxy-cyclohexyl)-3-(acetophenone)imidazol-2-ylidene], a mono-O-functionalized [1-(2-hydroxy-cyclohexyl)-3-(benzyl)imidazol-2-ylidene] and a non-functionalized [1,3-di-i-propyl-benzimidazol-2-ylidene], are reported. Specifically, the gold complexes, [1-(2-hydroxy-cyclohexyl)-3-(acetophenone)imidazol-2-ylidene]AuCl (1c), [1-(2-hydroxy-cyclohexyl)-3-(benzyl)imidazol-2-ylidene]AuCl (2c), and [1,3-di-i-propyl-benzimidazol-2-ylidene]AuCl (3b), were prepared from the respective silver complexes 1b, 2b, and 3a by treatment with (SMe2)AuCl in good yields following the commonly used silver carbene transfer route. The silver complexes 1b, 2b, and 3a were synthesized from the respective imidazolium halide salts by the reactions with Ag2O. The N-heterocyclic carbene precursors, 1-(2-hydroxy-cyclohexyl)-3-(acetophenone)imidazolium chloride (1a) and 1-(2-hydroxy-cyclohexyl)-3-(benzyl)imidazolium chloride (2a), were synthesized by the direct reactions of cyclohexene oxide and imidazole with chloroacetophenone and benzyl chloride respectively. The gold (1c, 2c, and 3b) and the silver (3a) complexes along with a new O-functionalized imidazolium chloride salt (1a) have been structurally characterized by X-ray diffraction. The structural studies revealed that geometries around the metal centers were almost linear in these gold and silver complexes. The gold (1c, 2c, and 3b) complexes efficiently catalyze ring-opening polymerization (ROP) of l-lactide under solvent-free melt conditions producing polylactide polymer of moderate to low molecular weights with narrow molecular weight distributions.  相似文献   

7.
Hydrothermal reactions of cadmium(II) or silver(I) salt, NaN3, 4-(imidazol-1-ylmethyl)benzonitrile (IBN) yield three coordination complexes, [Cd(L)2(H2O)2]·3H2O (1), [Cd3(L)5(OH)] (2) and [Ag2(L)2] (3) where HL=1-(5-tetrazolyl)-4-(imidazol-1-ylmethyl)benzene. The crystal structure analysis revealed that 1 has 1D hinged-chain structure containing 24-membered ring with a Cd···Cd intra-chain distance of 13.18 Å, while 2 is 1D ladder-like chain with Cd3O core. However, the complex 3 is a 3D 4-connected framework with Schläfli symbol of (42·63·8)(43·62·8). The L ligand was found to show four different coordination modes in 1-3, as 2-, 3- and 4-connector, respectively. The results indicate that the coordination modes of the ligand and metal centers with different coordination geometry have great influence on the structures of the complexes. In addition, the photoluminescence of the complexes were studied in the solid state at room temperature.  相似文献   

8.
The reactivity of (3,5-dimethyl-1H-pyrazol-1-yl)ethyldiphenylphosphine (L) hybrid ligand against Cu(I), Ag(I) and Au(I) has been assayed and compounds [Cu(L)2](PF6) (1), [Ag(L)]2(PF6)2·2C2H4Cl2·2C4H10O (2) and [AuCl(L)]2 (3) have been isolated and fully characterised. A fully characterisation by analytical and spectroscopic methods of 1-3 are presented and X-ray crystal structures of 1 and 2 are also reported. The similar data obtained between 2 and 3 permits to do a serious purpose of the structure of 3 in solid and solution.  相似文献   

9.
Six organophosphine/phosphite stabilized silver(I) methanesulfonates of type [LnAgO3SCH3] (L = Ph3P, n = 1, 2a; n = 2, 2b; n = 3, 2c; L = (EtO)3P; n = 1, 2d; n = 2, 2e; n = 3, 2f) were synthesized by the reaction of silver methanesulfonates with triphenylphosphine or triethylphosphite in dichloromethane under nitrogen atmosphere. These complexes were obtained in high yields and characterized by elemental analysis, 1H-, 13C{H} NMR, IR spectroscopy and thermogravimetric analysis (TGA), respectively. X-ray single crystal analysis reveals that complex 2a is a tetramer [Ph3PAgO3SCH3]4 and complex 2b is a monomer. The thermal stability of 2a has been studied by applying thermogravimetric analysis. It starts to decompose between 50 and 440 °C in a three-step process. The final residue (Ag) is about 20.50%.  相似文献   

10.
The extended structures of Ag-complexes of the azine based ligands phenyl-2-pyridyl ketone azine (L1) and di-2-pyridyl ketone azine (L2) are reported, and focus is made on the investigation of the influence of the anion and supramolecular interactions on the self-assembly. Using AgNO3, AgClO4 and CF3COOAg salts as starting materials for both ligands in acetonitrile, we observed the formation of the dinuclear complexes [Ag2(L1)2](NO3)2 (1a), [Ag2(L1)2](ClO4)2 (1b), from L1, the tetranuclear complexes [Ag4(L2)2 (NO3)(CH3CN)2](NO3)3 (2a), [Ag4(L2)2(CF3COO)3CH3CN](CF3COO) (2b) and the linear chain polynuclear complex {[Ag3(L2)2] (ClO4)3}n (3) from L2. The X-ray structures show that the molecular geometry depends on the choice of anion. The silver centers have distorted tetrahedral coordination geometry in all the complexes. Weak hydrogen bonding and other interactions result in 2-D and 3-D networks in these complexes.  相似文献   

11.
Four new silver(I) coordination polymers, namely [Ag(NH2pyz)(ox)0.5]n (1), [Ag(NH2pyz)(adp)0.5·2H2O]n (2), [Ag2(NH2pyz)2(bdc)·H2O]n (3) and [Ag2(NH2pyz)2.5(ndc)]n (4) [NH2pyz = 2-aminopyrazine, ox = oxalate anion, adp = adipate anion, bdc = 1,4-benzenedicarboxylate anion, ndc = 1,4-naphthalenedicarboxylate anion] have been synthesized by solution phase ultrasonic reactions of Ag2O with heterocyclic NH2pyz and various dicarboxylates under ammoniacal conditions. The complexes were characterized by elemental analyses, IR spectra and single-crystal X-ray diffraction. Complex 1 is a three-dimensional (3D) framework with an α-ThSi2 topology. Complex 2 features a 2D 44-sql net involving infinite 1D double Ag-NH2pyz chains and flexible adp anion spacers. Complex 3 is a 3D framework in which 1D single Ag-NH2pyz chains are pillared by bdc anions to form a 2D 63-hcb network, adjacent 2D networks are packed into a 3D framework through bridging O atoms of dbc anions. Complex 4 is a 2D structure built from infinite 1D stair-like chains containing finite Ag4(NH2pyz)5 subunits. The results show that the structural diversity of the complexes result from the nature of the dicarboxylate ligands. The photoluminescence properties of the complexes were also investigated in the solid state at room temperature.  相似文献   

12.
The reactions of the ligands 2,6-(Me2NCH2)2C5H3N (N’NN’) (1) and 2,6-(PhSeCH2)2C5H3N (SeNSe) (4) with different coinage metal starting materials gave 1:1, 2:1 or 1:2 metal-to-ligand species, i.e. [Ag(N’NN’){O(O)CCF3}] (2), [{Ag(PPh3)}2(N’NN’)](OTf)2 (3), [Au(SeNSe)Cl]Cl2 (5), [Ag(PPh3)(SeNSe)](OTf) (6), [Cu(MeCN)(SeNSe)](PF6) (7) or [Cu(SeNSe)2](PF6) (8). The new compounds were investigated by IR, multinuclear NMR spectroscopies as well as mass spectrometry. In most cases, the ligands 1 and 4 act as pincer ligands. An attempt to grow single crystals of 2 gave an unexpected result. The crystal investigated by X-ray diffraction proved to be a polynuclear species, [Ag4(N’NN’){O(O)CCF3}4(EtOH)]n (2a), which contains an unusual, bimetallic triconnective coordination pattern of the N’NN’ ligand. Two tetranuclear [Ag4(N’NN’){O(O)CCF3}4(EtOH)] units form centrosymmetric dimers further associated into a polymer which contains four different coordination environments around silver atoms. The complex 3, in which the ligand also exhibits a bimetallic triconnective pattern, shows an intense, long-lived luminescence in the solid state with emission energies in the green region of the visible spectrum.  相似文献   

13.
Reaction of silver(I) bromide with equimolar amounts of the rigid diphos ligands 1,2-bis(diphenylphosphano)benzene (dppbz) and 4,5-bis(diphenylphosphano)-9,9-dimethyl-xanthene (xantphos) in acetone and acetonitrile led to the corresponding chelates [Ag(μ2-Br)(dppbz)]2 (1) and [AgBr(xantphos)] (2). Treatment of 1 and 2 with pyridine-2-thione (py2SH) in ethanol gave the mixed-ligand complexes [AgBr(dppbz)(py2SH)] (3) and [AgBr(xantphos)(py2SH)] (4), respectively. Compounds 1, 2 and 4 have been characterized by X-ray diffraction, establishing distorted tetrahedral or trigonal planar coordination geometries of the silver atoms.  相似文献   

14.
Matthew Gardlik 《Tetrahedron》2009,65(35):7213-3013
Four molecular baskets 1-4, each comprising a modular bowl-shaped platform and a set of distinctive aromatic gates, were synthesized. The gates were made to incorporate a nitrogen heteroatom at different positions, as in 2-4, or without a coordinating nitrogen, as in 1 (Fig. 1). For polydentate 3 and 4, the location of the nitrogen was revealed to have an effect on directing the basket's coordination to Ag(I) cation, and subsequent folding to enclose space. The folded geometries were shown to encompass a helical, Ag(I):3, or C3v/C2v symmetrical, Ag(I):4, dynamic arrangement of the gates (from density functional theory). For 2 and 1, however, the presence of Ag(I) caused the sole formation of oligomers and the absence of coordinating interactions, respectively. Variable temperature (VT) 1H and 19F NMR measurements of Ag(I):3 did not provide direct evidence for the solvation of its inner space and the encapsulation of the BF4 counterion. Moreover, CH3CN or CH3NC substrates were not found inside of Ag(I):3. The finding is in contrast with the behavior of Cu(I):3, which is known to encapsulate these guests. The intriguing guest selectivity was accounted for by small structural and electronic differences of Ag(I)/Cu(I) folded baskets. The X-ray solid-state structural studies of 2, 3, and 4 revealed the basket's capacity to fill its inner space with small compounds. Thus, 3 was found with an ordered molecule of chloroform, while 4 contained molecules of CH3OH and H2O. The basket selectivity for enclosing and positioning guests, in the solid state, was deduced to be guided by their size and weak host-guest and guest-guest noncovalent interactions.  相似文献   

15.
A range of new diimidazolium salts, held together by an alkyl unit and bearing alcohol pendant arms on their nitrogen, was synthesized. A short modular reaction pathway leads to the N-heterocyclic carbene (NHC) precursors, differing by the flexibility of the bridge, the steric bulk of substituents in α-position of the OH groups and the anions. Treatment of diimidazolium salts with Ag2O yields AgI(carbene)2 complexes. The related trimethylene-bridged bis-NHC silver complexes 6 and 7 were crystallised with di-tosylate and di-hexafluorophosphate anions, respectively. Their X-ray structures revealed dimeric species, involving two ligands with different arrangements around the Ag cations, leading to crossed and parallel conformations.  相似文献   

16.
Five new copper(I)/silver(I) complexes containing 2-aminopyridine, [Cu(μ-Cl)(2-Apy)(PPh3)]2(1), [Ag(μ-Cl)(2-Apy)(PPh3)]2(2), [Ag(μ-Br)(2-Apy)PPh3)]2(3), [Ag(μ-ONO2)(2-Apy)(PPh3)]2(4), [Ag(μ-ONO2)(2-Apy)(AsPh3)]2(5) have been synthesised for the first time. Complexes 15 are obtained by the reactions of MX (MX = CuCl for 1; M = Ag for 2–5; X = Cl, Br for 23; X = NO3 for 4–5) with the monodentate ligands EPh3 (E = P for 14; E = As for 5) and 2-Apy in the molar ratio of 1:1:2 in the mixed solvent of CH2Cl2 and MeOH. Complexes 15 are characterised by IR and X-ray diffraction. In 15, chloride, bromide and nitrate ions bridge two metal atoms to form dinuclear complexes containing the parallelogram cores M2X2 (M = Cu, Ag).  相似文献   

17.
Reaction of the twisted pyridyl dithioether ligand bis(4-pyridylthio)methane (4bpytm) with silver(I) salts afforded four complexes with 1:1 stoichiometries, namely [Ag(4bpytm)](NO3) (1), [Ag(4bpytm)](ClO4) (2) and [Ag(4bpytm)](ClO4) ½CH2Cl2 ½dmf (2·Solv), [Ag(CH3COO)(4bpytm)]·H2O (3) and [Ag(CF3COO)(4bpytm)] (4). X-ray structural analysis of these complexes showed that one-dimensional structures are obtained for 1, 2·Solv and 4 whereas a two-dimensional network is formed in 3. The ligand 4bpytm acts as an N,N′-bis(monodentate) bridging system in all cases except in 3, where an unprecedented coordination mode is obtained with the ligand acting in a tridentate manner using its two pyridine nitrogen atoms and a sulfur atom. The coordination polymers are assembled through secondary contacts: Ag···Ag in 4, Ag···S in 1, 2·Solv and 4, Ag···O in 2·Solv, and hydrogen bonding interactions between crystallization water that join the polymeric layers in 3. All of these weak interactions link the low-dimensional complexes to give high-dimensional supramolecular structures and further stabilize the crystal structures in the solid state.  相似文献   

18.
The synthesis of the Boc-protected 1-(2-aminoethyl)-3-methylimidazolium salts [BocNHCH2CH2ImMe]X [2]X (X = I, PF6) and their straightforward transformation into [NH2CH2CH2ImMe]X [3]X is reported. The reaction between [2]X and Ag2O leads to the formation in the solid state of three different bonding motifs: a biscarbene salt [(NHC-NHBoc)2Ag]PF6 ([4]PF6, NHC-NHBoc = 1-(2-BocNH-ethyl)-3-methyl-imidazolin-2-ylidene), a tetranuclear complex [Ag(NHC-NHBoc)2]2[Ag2I4], (5), and a polymeric silver “staircase” [(NHC-NHBoc)2-Ag4-I4]n, (6) composed of Ag4I4 clusters. The same reaction carried out with [3]I showed that a primary silver mono-NHC-NH2 carbene complex of the type [(NHC-NH2)AgI] (7) is likely to form but it is unstable in solution. The solid state molecular structures of [4]PF6, 5 and 6 were determined by X-ray diffraction analysis, whereas PGSE NMR experiments were employed to investigate the hydrodynamic dimension of the imidazolium salts and silver complexes and, consequently, to gain information on the level of aggregation in solution. PGSE NMR studies were complemented by NOE NMR investigations in order to obtain information on anion-cation relative orientation within aggregates.  相似文献   

19.
20.
Five mixed ligands coordination polymers [Ag4(apym)2(pma)·(H2O)2]n (1), {[Ag4(dmapym)4(pma)·(H2O)2]·(H2O)6}n (2), [Ag2(apyz)2(H2pma)·(H2O)4]n (3), {[Ag4(apyz)2(pma)·(H2O)2]·(H2O)2}n (4) and [Ag4(NH3)8(pma)·(H2O)6]n (5) (apym = 2-aminopyrimidine, dmapym = 4, 6-dimethyl-2-aminopyrimidine, apyz = 2-aminopyrazine, H4pma = pyromellitic acid) were synthesized and characterized. For 1 and 2, as the substituents change from H to methyl, the dimensions of 12 decrease from three-dimension (3D) to one-dimension (1D) due to the steric effect of methyl groups. For 3 and 4, as the ratios of Ag2O/apyz/pma vary from 1:1:1 to 2:1:1, the structure of 3 is a 1D ladder structure built from Ag-apyz double chains and pma anions, while the structure of 4 is a two-dimension (2D) grid. As excess ammonia is added to above four reaction systems, the structure of 5 contains unprecedented {[Ag(NH3)2]+}n chains and pma anions. The substituent on the pyrimidyl ring, ratios of reactants, solvent systems and ligand isomers intensively influence the coordination environments of metal ion and the coordination modes of the carboxyl group, and thus determine the structures of the coordination polymers. The photoluminescent properties of 15 were also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号