首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis of novel 6,7-[15-crown-5]-3-[p-(3,4-dicyanophenoxy)phenyl]coumarin (1)/6,7-[15-crown-5]-3-[p-(2,3-dicyanophenoxy)phenyl]coumarin (2) and their peripherally/non-peripherally cobalt and copper phthalocyanine complexes (3-6) have been prepared and characterized by elementel analysis, 1H-NMR, MALDI-TOF, FT-IR and UV-Vis spectral data. Fluorescence intensity changes of compound 1 and 2 have been determined by addition of Na+ or K+ ions at 25 °C in THF. The effect of substitution type on the redox and aggregation behaviour of the compounds was investigated by voltammetry and in situ spectroelectrochemistry.  相似文献   

2.
The novel zinc phthalocyanine (3) with malonylester and chloro groups on each benzo unit was synthesized from 4-diethoxymalonyl-5-chloro-phthalonitrile (1). The unsymmetrically substituted zinc phthalocyanine (5), carrying hexylthio, malonylester and chloro groups at the periphery, was obtained from 4-diethoxymalonyl-5-chloro-phthalonitrile (1) and 4,5-bis-hexylsulfanyl-phthalonitrile (2) by a statistical condensation method as an A3B type unsymmetrical phthalocyanine compound. Transesterification of the malonyl esters of the new symmetrical and unsymmetrical phthalocyanines occurred during the cyclotetramerization of dinitriles with Zn(CH3COO)2 in 1-pentanol in the presence of DBU. Octa-hexylthio-substituted zinc phthalocyanine (4) was prepared according to the literature. The photophysical and thermal properties of all the phthalocyanine complexes are described for the first time. These novel symmetrical and unsymmetrical phthalocyanine macrocycles have been characterized by a series of spectroscopic methods including 1H NMR, electronic absorption, IR and mass spectroscopy, in addition to elemental analysis. Their narrow long wavelength absorption band shows that the bulky substituents on the periphery prevent aggregation. The unsymmetrically substituted phthalocyanine (5) gave a greater fluorescence quantum yield in chloroform than the symmetrical analogues (3 and 4).  相似文献   

3.
Preparation and characterization of tetrasubstituted zinc(II) phthalocyanines in which sulfur is not linked to the macrocycle are reported herein for the first time. Thioacetic acid S-[3-(3,4-dicyano-phenoxy)-propyl]ester (4) was synthesized in 55% yield from 4-nitrophthalonitrile and thioacetic acid S-(3-hydroxy-propyl)ester (3). Tetrasusbtituted thiol-derivatized zinc(II) phthalocyanine 5 was obtained from 4 and zinc acetate in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene in butanol. Treatment of 5 with sodium methoxide afforded phthalocyanine 6.  相似文献   

4.
The reaction of N-(5-methyl-2-thienylmethylidene)-2-thiolethylamine (1) with Fe2(CO)9 in refluxing acetonitrile yielded di-(μ3-thia)nonacarbonyltriiron (2), μ-[N-(5-methyl-2-thienylmethyl)-η11(N);η11(S)-2-thiolatoethylamido]hexacarbonyldiiron (3), and N-(5-methyl-2-thienylmethylidene)amine (4). If the reaction was carried out at 45 °C, di-μ-[N-(5-methyl-2-thienylmethylidene)-η1(N);η1(S)-2-thiolethylamino]-μ-carbonyl-tetracarbonyldiiron (5) and trace amount of 4 were obtained. Stirring 5 in refluxing acetonitrile led to the thermal decomposition of 5, and ligand 1 was recovered quantitatively. However, in the presence of excess amount of Fe2(CO)9 in refluxing acetonitrile, complex 5 was converted into 2-4. On the other hand, the reaction of N-(6-methyl-2-pyridylmethylidene)-2-thiolethylamine (6) with Fe2(CO)9 in refluxing acetonitrile produced 2, μ-[N-(6-methyl-2-pyridylmethyl)-η1 (Npy);η11(N); η11(S)-2-thiolatoethylamido]pentacarbonyldiiron (7), and μ-[N-(6-methyl-2-pyridylmethylidene)-η2(C,N);η11(S)-2- thiolethylamino]hexacarbonyldiiron (8). Reactions of both complex 7 and 8 with NOBF4 gave μ-[(6-methyl-2-pyridylmethyl)-η1(Npy);η11(N);η11(S)-2-thiolatoethylamido](acetonitrile)tricarbonylnitrosyldiiron (9). These reaction products were well characterized spectrally. The molecular structures of complexes 3, 7-9 have been determined by means of X-ray diffraction. Intramolecular 1,5-hydrogen shift from the thiol to the methine carbon was observed in complexes 3, 7, and 9.  相似文献   

5.
The synthesis, spectroscopic and electrochemical properties of the tetra-(3-ferrocenyl-7-oxycoumarin)-substituted zinc (II) and cobalt (II) phthalocyanines (3 and 4) are reported for the first time. The synthesis of novel 3-ferrocenyl-7-hydroxycoumarin (1) was performed according to Perkin reaction, and the ligand, 7-(3,4-dicyanophenoxy)-3-ferrocenylcoumarin (2), was synthesized by the reaction of 3-ferrocenyl-7-hydroxycoumarin with 4-nitrophthalonitrile in the presence of K2CO3 as the base in dry dimethylformamide. The preparation of the corresponding zinc (II) and cobalt (II) metallo phthalocyanines (3 and 4) substituted with 3-ferrocenyl-7-oxycoumarin moieties at β-positions of the phthalocyanine ring was achieved by the cyclotetramerization of the coumarin ligand (2) with relevant metal(II) acetates in dry 2-dimethylaminoethanol. The new compounds have been characterized by elemental analyses, FT-IR, 1H NMR, Mass and electronic spectroscopy. The fluorescence property of the zinc metallo phthalocyanine (3) is strongly affected by the presence of ferrocenyl moiety. The ferrocenyl moieties were very efficient in quenching the excited state of 3, which show very poor fluorescent intensity. The electrochemical properties of the complexes were also investigated by cyclic and differential pulse voltammetry techniques in non-aqueous medium. It was found that the redox-active ferrocene substituents are reduced concurrently at one potential.  相似文献   

6.
Triphenylantimony(III) and triethylantimony(III) readily react with 4,5-(1,1,4,4-tetramethyl-butane-1,4-diyl)-o-benzoquinone to form catecholato complexes R3Sb(4,5-Cat) (R = Ph (1), Et (2); 4,5-Cat is dianionic 4,5-(1,1,4,4-tetramethyl-butane-1,4-diyl)-catecholate). In polar solvents (CHCl3, acetone) complex 1 transforms easily to ionic complex compound [Ph4Sb]+[Ph2Sb(4,5-Cat)2] (3) with diphenyl-bis-[4,5-(1,1,4,4-tetramethyl-butane-1,4-diyl)-catecholato]antimony(V) complex anion. Complexes were characterized by IR, 1H, 13C NMR spectroscopy, cyclic voltammometry. Molecular structure of 3·CHCl3 was confirmed by X-ray analysis. Cyclic voltammometry of 1 and 3 shows that both complexes undergo reversible one-electron oxidation to quite stable paramagnetic o-semiquinonato species [Ph3Sb(4,5-SQ)]+ and [Ph2Sb(4,5-SQ)(4,5-Cat)] (0.75 and 0.49 V in CH2Cl2 vs. Ag/AgCl/KCl, respectively).  相似文献   

7.
Shin-ichi Naya 《Tetrahedron》2005,61(31):7384-7391
The synthesis and properties of 4,9-methanoundecafulvene [5-(4,9-methanocycloundeca-2′,4′,6′,8′,10′-pentaenylidene)pyrimidine-2,4,6(1,3,5H)-trione] derivatives 8a,b were studied. Their structural characteristics were investigated on the basis of the 1H and 13C NMR and UV-vis spectra. The rotational barrier (ΔG) around the exocyclic double bond of 8a was found to be 12.55 kcal mol−1 by the variable temperature 1H NMR measurement. The electrochemical properties of 8a,b were also studied by CV measurement. Furthermore, the transformation of 8a,b to 3-substituted 7,12-methanocycloundeca[4,5]furo[2,3-d]pyrimidine-2,4(1H,3H)-diones 16a,b was accomplished by oxidative cyclization using DDQ and subsequent ring-opening and ring-closure. The structural details and chemical properties of 16a,b were clarified. Reaction of 16a with deuteride afforded C13-adduct 19 as the single product, and thus, the methano-bridge controls the nucleophilic attack to prefer endo-selectivity. The photo-induced oxidation reaction of 16a and a vinylogous compound, 3-methylcyclohepta[4,5]furo[2,3-d]pyrimidine-2,4(3H)-dione 2a, toward some amines under aerobic conditions were carried out to give the corresponding imines (isolated by converting to the corresponding 2,4-dinitrophenylhydrazones) with the recycling number of 6.1-64.0 (for 16a) and 2.7-17.2 (for 2a), respectively.  相似文献   

8.
A tetranitrile monomer N,N-bis{2-[2-(3,4-dicyanophenoxy)ethoxy]ethyl}-4-methylbenzenesulfonamide (3) was synthesized by nucleophilic aromatic substitution of N,N-bis[2-(2-hydroxyethoxy)ethyl]-4-methylbenzenesulfonamide (1) onto 4-nitrophthalonitrile (2). The metal-free phthalocyanine polymer (4) was prepared by the reaction of a tetranitrile monomer 3 in 2-(dimethylamino)ethanol. Ni(II), Co(II) and Cu(II) phthalocyanine polymers were prepared by the reaction of the tetranitrile compound with the chlorides of Ni(II), Co(II) and Cu(II) in 2-(dimethylamino)ethanol (DMAE). The Zn(II)-phthalocyanine polymer was prepared by the reaction of the tetranitrile compound with the acetate of Zn(II) in DMAE. The new compounds were characterized by a combination of IR, 1H NMR, 13C NMR, UV–Vis, elemental analysis and MS spectral data.  相似文献   

9.
The new metal-free (4) and metallophthalocyanines (5) carrying macrocyclic moieties linked ferrocenyl groups have been synthesized by direct cyclotetramerization of the pre-cursor, 12,13-dicyano-4,7-bis(ferrocenylmethyl)-2,3,4,5,6,7,8,9-octahydrocyclobenzo[k]-4,7-diaza-1,10-dithiacyclododecine (3) which has been prepared by the macrocyclization reaction of 1,2-bis(2-iodoethylmercapto)-4,5-dicyanobenzene (1) with N,N′-ethylenebis-(ferroceneylmethyl)amine (2), in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as a strong organic base. Nickel (II) phthalocyanine (5) was synthesized by the reaction of metal-free phthalocyanine with anhydrous NiCl2 in dry quinoline. The target compound and its intermediates have been characterized by a combination of elemental analysis and 1H, 13C NMR, IR, UV-Vis and MS spectral data.  相似文献   

10.
Dicarbonyl[η5-2,3,4,5-tetramethyl-1-(8-quinolyl)cyclopentadienyl]rhodium(I) (1) was prepared by the reaction of [Rh(CO)2Cl]2 with 2,3,4,5-tetramethyl-1-(8-quinolyl)cyclopentadienyl-potassium. Irradiation of 1 in chloroform or dichloromethane as solvent leads to the formation of dichloro[η5-2,3,4,5-tetramethyl-1-(8-quinolyl)cyclopentadienyl]rhodium(III) (2). When Rh6(CO)16 is present, the cluster adds to the 8-quinolyl-cp-rhodium fragment and the compound [η5-2,3,4,5-tetramethyl-1-(8-quinolyl)cyclopentadienyl]rhodium-di-μ-carbonyl-hexarhodiumtetradecacarbonyl (3) is formed in 65% yield. The coordination sphere of the rhodium(III) atom in compound 2 and of the rhodium(I) atom in 3 is completed by a coordination of the quinolyl moiety. This was revealed by NMR spectroscopy as well as by X-ray analyses.  相似文献   

11.
The synthesis and characterization of new peripherally tetra-3,5-dimethylpyrazole-1-methoxy substituted metal-free (4), zinc (5), nickel (6), cobalt (7), copper (8) and lead (9) phthalocyanines are described for the first time in this study. The photophysical (fluorescence quantum yields and fluorescence lifetimes) and photochemical (photodegradation and singlet oxygen quantum yields) properties of metal-free (4), zinc (5) and lead (9) phthalocyanines are studied in dimethylsulfoxide (DMSO). Nickel (6), cobalt (7) and copper (8) phthalocyanines (6-8) did not evaluate for this purpose due to transition metal and paramagnetic behavior of central metals in the phthalocyanine cavity. The fluorescence quenching behavior of metal-free (4), zinc (5) and lead (9) phthalocyanines are also investigated. The fluorescence emissions of these phthalocyanines are effectively quenched by 1,4-benzoquinone in DMSO.  相似文献   

12.
Reaction of guaiazulene (1) with o-formylbenzoic acid (2) in diethyl ether in the presence of hexafluorophosphoric acid at 25 °C for 90 min gives the corresponding monocarbenium-ion compound, [2-(carboxy)phenyl](3-guaiazulenyl)methylium hexafluorophosphate (3), quantitatively, which upon treatment with aq NaHCO3 leads to 3-(3-guaiazulenyl)-2-benzofuran-1(3H)-one (5) in 96% isolated yield. Similarly, reaction of 1 with 2 in methanol under the same conditions as the above reaction affords two kinds of inseparable monocarbenium-ion compounds, 3 and (3-guaiazulenyl)[2-(methoxycarbonyl)phenyl]methylium hexafluorophosphate (4) with an equilibrium between them, which upon reaction with a solution of NaBH4 in ethanol at 25 °C for 30 min leads to 5 in 46% isolated yield and (3-guaiazulenyl)[2-(methoxycarbonyl)phenyl]methane (6) in 37% isolated yield. Along with the 1H and 13C NMR spectral properties of a solution of 5 in trifluoroacetic acid-d1 at 25 °C, whose molecular structure is converted to a ca. 1:1 equilibrium mixture of 7 possessing a partial structure of the 3-guaiazulenylmethylium-ion and 8 possessing a partial structure of the 3-guaiazulenium-ion, comparative studies on the 1H and 13C NMR spectral properties of 7 and 8 with those of the monocarbenium-ion compound, (3-guaiazulenyl)[4-(methoxycarbonyl)phenyl]methylium hexafluorophosphate (A), 5, and 6 are reported. From these NMR studies, it can be inferred that the positive charge of the 3-guaiazulenylmethylium-ion part of 7 apparently is transferred to the seven-membered ring, generating a resonance form of the 3-guaiazulenylium-ion structure η′, and the same result can be inferred for the previously documented monocarbenium-ion compounds A-I. Moreover, referring to a comparative study on the C-C bond lengths of A observed by the X-ray crystallographic analysis with those of the optimized (3-guaiazulenyl)[4-(methoxycarbonyl)phenyl]methylium-ion structure for A calculated by a WinMOPAC (Ver. 3.0) program using PM3, AM1, or MNDOD as a semiempirical Hamiltonian, the optimized [2-(carboxy)phenyl](3-guaiazulenyl)methylium-ion structure for 3 calculated using PM3 is described.  相似文献   

13.
The phthalodinitrile derivative 1 was prepared by the reaction of 4-nitrophthalonitrile and 1,3-dimethoxy-4-tert-butylcalix[4]arene in dry dimethylsulfoxide as the solvent, in the presence of the base K2CO3, by nucleophilic substitution of an activated nitro group in an aromatic ring. The tetramerization of compound 1 gave a binuclear zinc(II) phthalocyanine and a metal-free phthalocyanine of the ball type, 2 and 3, respectively. Its condensation with 4,5-bis(hexylthio)phthalonitrile results in a binuclear phthalocyanine of the clamshell type, 4. The newly synthesized compounds were characterized by elemental analysis, UV–Vis, IR, MS and 1H NMR spectra. The electronic spectra exhibit an intense π → π transition with characteristic Q and B bands of the phthalocyanine core. The electrochemical properties of 24 were examined by cyclic voltammetry in non-aqueous media. The voltammetric results showed that while there is no considerable interaction between the two phthalocyanine rings in 4, the splitting of a molecular orbital occurs as a result of the strong interaction between the phthalocyanine rings in 2 and 3.  相似文献   

14.
The olefinic centred Schiff base (3) was obtained from the condensation of substituted dialdehyde (1) with 2-amino-4-methylphenol (2) in a 1:2 ratio. The diphthalonitrile derivative (5) was prepared by the reaction of 4-nitrophthalonitrile (4) and compound (3) in dry dimethylformamide/potassium carbonate. The key product (5) was obtained by nucleophilic substitution of an activated nitro group into an aromatic ring. The cyclotetramerization of compound (5) with phthalonitrile (6) in 1:6.15 ratio gave the expected metal-free phthalocyanine of clamshell type (7), and with metal salts of Zn(II), Ni(II), Co(II) and Cu(II) gave metallophthalocyanines of clamshell types (8-11), respectively in dimethylaminoethanol/1,8-diazabycyclo[5.4.0]undec-7-ene system. The products were purified by several techniques such as crystallization and preparative thin layer chromatography. The newly prepared compounds were characterised by a combination of elemental analyses, IR, 1H/13C NMR, MS and UV-Vis spectroscopy.  相似文献   

15.
An hydroxyl substituted hexa(phenoxy)cyclotriphosphazene (3) is reacted with silicon phthalocyanine (4), SiPc(Cl)2, to give an axially-disubstituted phenoxycyclotriphosphazenyl silicon phthalocyanine (5). In this study, an axially phosphazene substituted phthalocyanine complex synthesized at the first time. Newly synthesized silicon phthalocyanine complex has been fully characterized by elemental analysis, ESI mass spectrometry, FT-IR, 1H, 13C and 31P NMR spectroscopy. Photophysical (fluorescence quantum yield and lifetime) and photochemical (singlet oxygen generation and photodegradation quantum yield) properties of complex 5 are reported in DMSO. The fluorescence quenching behaviour of this complex by 1,4-benzoquinone (BQ) is also reported in DMSO.  相似文献   

16.
Fluorinated ionomer p-perfluoro[1-(2-sulfonic)ethoxy]ethylated polyacrylonitrile-styrene (SFAS) (5) was synthesized via electron transfer reaction between polyacrylonitrile-styrene (AS) (1) and perfluoro-di[2-(2-fluorosulfonyl)ethoxy]propionyl peroxide (FAP) (2) and followed by alkali hydrolysis and acidification of p-perfluoro[1-(2-fluorosulfonyl)ethoxy]ethylated polyacrylonitrile-styrene (3). The microstructure of ionomer 5 was well characterized by FTIR and 19F NMR. Its desulfonation occurred above 197 °C was found by TGA, the degree of substitution (DS) and ion exchange capacity (IEC) determined by titration were well controlled through changing the molar ratio of 2:1. The proton exchange membranes made of ionomer 5 have water uptake from 13.4 to 135.3% and conductivity up to 10−2 S cm−1 at 25 °C.  相似文献   

17.
Reactions of 2-(1H-benzimidazol-2-yl)phenol (1) and SnPh3Cl, SnPh2Cl2 and SnCl4 were investigated. One tetracoordinated triphenyltin(IV) compound: triphenyltin-2-(1H-benzimidazol-2-yl)phenolate] (3) and its adducts: [O → Sn] dimethylsulfoxide triphenyltin-[2-(1H-benzimidazol-2-yl)phenolate] (4), [O → Sn] aqua triphenyltin-[2-(1H-benzimidazol-2-yl)phenolate] (5) [O → Sn] ethanol triphenyltin-[2-(1H-benzimidazol-2-yl)phenolate] (6), [N → Sn] pyridine triphenyltin-[2-(1H-benzimidazol-2-yl)phenolate] (7), where 1 acts as a monodentate ligand bound through the phenol oxygen, were obtained. In the pentacoordinated compounds 4-7, the tin atom has tbp geometry. The three phenyl groups are in equatorial positions, whereas the benzimidazole and the Lewis base are in apical positions. Two hexacoordinated tin compounds: diphenyltin-bis[2-(1H-benzimidazol-2-yl-κN)phenolate-κO] (8), dichlorotin-bis[2-(1H-benzimidazol-2-yl-κN)phenolate-κO] (9) bearing two bidentate ligands are reported. The coplanar ligands in 8 and 9 form six membered rings by oxygen and nitrogen coordination. The tin geometry is all-trans octahedral. In 8 the two phenyl groups, and in 9 the two chlorine atoms are perpendicular to the plane of the ligands. Compounds were identified in solution mainly by 1H, 13C and 119Sn NMR and in the solid state by X-ray diffraction analysis.  相似文献   

18.
Preparation of some novel symmetrically tetrasubstituted metal-free phthalocyanine (6) and metallophthalocyanines (7-10) containing four 18-membered tetrathiadiaza macrocycles moieties on peripheral positions has been achieved by cyclotetramerization reaction of phthalonitrile derivative (5) in a multi-step reaction sequence. Metal-free phthalocyanine (6) was synthesized by microwave irradiation of 13,24-bis[(4-methylphenyl)sulfonyl]-6,7,14,15,23,24-hexahydro-13H,22H-tribenzo[b,h,n][1,4,10,13,7,16]tetrathiadiazacyclo-octadecine-18,19-dicarbonitrile (5) in 2-(dimethylamino)ethanol. The metallophthalocyanines (7-10) were prepared by the reaction of the phthalonitrile compound (5) with NiCl2, Zn(CH3COO)2, CoCl2, CuCl2 salts, respectively, by microwave irradiation in 2-(dimethylamino)ethanol for at 175 °C, 350 W. The new compounds were characterized by IR, 1H NMR, 13C NMR, UV-Vis, elemental analysis and MS spectra data.  相似文献   

19.
The hydro(solvo)thermal self-assembles of CuI, KI and 2,5-dicarboxylpyridine [2,5-(COOH)2py] in different molar ratios in H2O/alcohol solutions produced three Cu coordination polymers as 2-D [N-C2H5py][Cu3I4] 1, 1-D [N-CH3py][Cu2I3] 2 as well as 1-D [Cu(2-COOpy)2]H2O 3 (N-C2H5py=N-ethylpyridine, N-CH3py=N-methylpyridine, 2-COOpy=2-carboxylpyridine). N-C2H5py in 1 and N-CH3py in 2 derived from the solvothermal in situ simultaneous decarboxylation and N-alkylation reactions of 2,5-(COOH)2py. The semi-decarboxylation reaction of 2,5-(COOH)2py into 2-COOpy occurred in the preparation of 3. X-ray single-crystal analysis revealed that CuI is transformed into a 2-D [Cu3I4] layer in compound 1 and a 1-D chain in compound 2, templated by [N-C2H5py]+ and [N-CH3py]+, respectively. Compound 3 is a divalent Cu compound. The Cu(II) centers with a 4+2 geometry are coordinated by μ3-mode 2-COOpy ligands. All of the title compounds were characterized by CHN analysis, IR spectrum analysis and TG analysis. Compounds 1 and 2 exhibit fluorescence properties with the maximum emissions at 581 nm for 1 and 537 nm for 2.  相似文献   

20.
Shin-ichi Naya 《Tetrahedron》2008,64(14):3225-3231
As novel methodology for synthesizing the furan ring, a photoinduced oxidative cyclization of 5-(4′,9′-methanocycloundeca-2′,4′,6′,8′,10′-pentaenylidene)pyrimidine-2,4,6(1,3,5H)-triones (7a-c) and related compounds 9a-c was accomplished to give 5,10-methanocycloundeca[4,5]furo[2,3-d]pyrimidine-2,4(1,3H)-dionylium tetrafluoroborates (8a-c+·BF4) and related compounds 2a-c+·BF4, respectively. In the photoinduced oxidative cyclization, the molecular oxygen in air is used as oxidant and the reaction proceeds under mild conditions to give desired products without byproducts, and thus, it is interesting from the viewpoint of the green chemistry. On the reactions of the mono-substituted derivatives 7d,e and 9e,f, the selectivity of the photoinduced cyclizations were reversed as compared with those of the DDQ-promoted oxidative cyclizations. By the NMR monitoring of the reactions of 7a and deuterated compound 7a-D2 under degassed conditions, the details of the reaction pathway were clarified and rationalized on the basis of the MO calculation by the 6-31G basis set of the MP2 levels as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号