首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three Co(II), Ni(II) and Zn(II) complexes of orotate with the N-methylimidazole ligand were synthesized and characterized by means of elemental and thermal analysis, magnetic susceptibilities, IR, UV-Vis spectroscopic and antimicrobial activity studies. The crystal structures of [Co(HOr)(H2O)2(Nmeim)2]3·H2O (1), [Ni(HOr)(H2O)2(Nmeim)2] (2) and [Zn(HOr)(H2O)(Nmeim)2] (3) were determined by the single crystal X-ray diffraction technique (H3Or = orotic acid and Nmeim = N-methylimidazole). In complexes 1 and 2, the Co(II) and Ni(II) ions have distorted octahedral geometries with two Nmeim, one orotate and two aqua ligands. Complex 3 has a distorted trigonal bipyramidal geometry with two N-methylimidazole, one orotate and one aqua ligands. In the complexes, the orotate is coordinated to the metal(II) ions through the deprotonated nitrogen atom of the pyrimidine ring and the oxygen atom of the carboxylate group as a bidentate ligand. The complexes form a three-dimensional framework by hydrogen bonding, C-H?π and π?π stacking interactions. The MIC values of the complexes against selected microorganisms were determined to be in range 300-2400 μg/mL.  相似文献   

2.
Three new copper complexes and one cobalt complex with 5-(pyrazinyl)tetrazolate anion, (pyztz), as chelating bidentate ligand, were obtained by the reaction of pyrazinecarbonitrile with sodium azide in the presence of copper(II) nitrate or cobalt(II)chloride. Complexes of composition [Cu(pyztz)2(H2O)] (1) deep blue crystals, [Cu(pyztz)2(H2O)2] (2a) green crystals, [Co(pyztz)2(H2O)2] (2b) orange crystals, [Cu(pyztz)2(H2O)2] · (H2O) (3) blue crystals were obtained. The single crystal X-ray diffraction revealed that complex 1 has square pyramidal structure with one water molecule at apical and two pyrazine-tetrazolato ligands at basal sites, while structures of 2a, 2b and 3 consist of octahedrally coordinated metal ions, where two pyztz anions act as bidentate ligands via one of the pyrazine-N atoms and one of the tetrazole-N atoms in trans-positions and two trans water molecules. Complex 3 contains one extra lattice water molecule. Hydrogen bonds of the types O–H?O and O–H?N connect the mononuclear units to a three-dimensional network structure in 2 (a and b are isostructural) and 3. Although the H-bond patterns look complex it is shown that they can be related to the well-known three- and six-connected rutile net (rtl) in 2 and the four- and six-connected fsh-net in 3.  相似文献   

3.
Two new mixed-ligand coordination polymers, {[Co(μ1,3-sq)(H2O)2(2-Meim)2]·2(2-Meim)}n (1) and [Cd(μ1,3-sq)(H2O)2(4(5)-Meim)2]n (2), (sq = squarate, 2-Meim = 2-methylimidazole, 4(5)-Meim = 5-methylimidazole) have been synthesized and structurally characterized by X-ray crystallography. The spectral (IR and UV–Vis) and thermal analyses are also reported. The Co(II) and Cd(II) ions are distorted octahedrally coordinated by four oxygen atoms of two O1–O3-bridging squarate ligands and two trans-aqua ligands, and by two nitrogen atoms of the trans-imidazole (2-Meim or 4(5)-Meim) ligands. The structures of 1 and 2 consist of one-dimensional chains of μ-1,3-squarato bridged metal(II) complex units. These chains are held together by hydrogen bonding interactions, forming three-dimensional framework.  相似文献   

4.
Four new complexes [Ni3(μ-L)6(H2O)6](NO3)6·6H2O (1), [Co3(μ-L)6(H2O)6](NO3)6·6H2O (2), [Ni3(μ-L)6(H2O)4(CH3OH)2](NO3)6·4H2O (3), [Co3(μ-L)6(H2O)4(CH3OH)2](NO3)6·4H2O (4) (L = 4-amino-3,5-dimethanyl-1,2,4-triazole) were synthesized and structurally characterized by X-ray single-crystal diffraction. The structural analyses show that complex 1 and 2 are isomorphous; complex 3 and 4 are isomorphous. Four complexes all consist of the linear trinuclear cations ([M3(μ-L)6(H2O)6]6+ (M = Ni,Co) for 1 and 2; [M3(μ-L)6(H2O)4(CH3OH)2]6+ (M = Ni,Co) for 3 and 4), NO3 anions and crystallized water molecules. In the trinuclear cations, the central M(II) ions and two terminal M(II) ions are bridged by three triazole ligands. Other eleven solid solution compounds which are isomorphous with complex 3 and 4 were obtained by using different ratio of Ni(II) and Co(II) ions as reactants and ICP result indicates that ligand L has higher selectivity of Ni(II) ions than that of Co(II) ions. The magnetic analysis was carried out by using the isotropic spin Hamiltonian ? = −2J(?1?2 + ?2?3) (for complexes 1 and 3) and simultaneously considering the temperature dependent g factor (for complexes 2 and 4). Both the UV-Vis spectra and the magnetic properties of the solid solutions can be altered systematically by adjusting the Co(II)/Ni(II) ratio.  相似文献   

5.
A bioinorganic approach into the problem of the isomorphous substitution of calcium(II) by lanthanide(III) ions in biological systems is discussed. Reactions of malonamic acid (H2malm) with CaII and NdIII sources under similar conditions yielded the compounds [Ca(Hmalm)2]n (1), [Nd(Hmalm)2(H2O)2]n(NO3)n (2) and [Nd(Hmalm)2(H2O)2]nCln·2nH2O (3·2nH2O). Their X-ray crystal structure data show that the malonamate(-1) ligand presents two different ligation modes and coordinates through the two carboxylate and the amide-O atoms, thus bridging three CaII ions in 1 and two NdIII ions in 2 and 3·2nH2O. Complex 1 is a 3D coordination polymer based on neutral repeating units, whereas 2 and 3·2nH2O are 1D coordination polymers based on the same cationic repeating unit. Hydrogen bonding interactions further stabilize the 3D framework structure of 1 and assemble the 1D chains of 2 and 3·2nH2O into 3D networks. The three complexes were characterized spectroscopically (IR, far-IR, and Raman) and the thermal decomposition of 2 and 3·2nH2O was monitored by TG/DTA and TG/DTG measurements. Variable-temperature magnetic susceptibility data for 2 are also reported. The bioinorganic chemistry relevance of our results is discussed.  相似文献   

6.
The reaction of Mn(OAc)2·4H2O with bis(5-phenyl-2H-1,2,4-triazole)-3-yl-disulfane (H2ptds·2H2O) (1) yielded new complex [Mn(ptds)(o-phen)2] (2). It is observed that under similar conditions the reaction of Co(OAc)2 with H2ptds·2H2O (1) leads to thermolysis of the S-S bond of the disulfane to yield [Co(pts)(o-phen)2]·H2O·0.5C2H5OH, with the newly generated organic ligand 5-phenyl-2H-1,2,4-triazole-3-sulfinate, (pts)2−. The ligand H2ptds·2H2O (1), [Mn(ptds)(o-phen)2] (2) and [Co(pts)(o-phen)2]·H2O·0.5C2H5OH (3) crystallized into monoclinic, trigonal and triclinic crystal systems, respectively. The triazole ring nitrogen of the bidentate ligand chelates the Mn(II) center forming a seven membered chelate ring, while N, O donor sites of the resulting triazole sulfinate bond Co(II) to form a five membered chelate. The resulting complexes are paramagnetic and have a distorted octahedral geometry.  相似文献   

7.
Varying coordination modes of the Schiff base ligand H2L [5-methyl-1-H-pyrazole-3-carboxylic acid (1-pyridin-2-yl-ethylidene)-hydrazide] towards different metal centers are reported with the syntheses and characterization of four mononuclear Mn(II), Co(II), Cd(II) and Zn(II) complexes, [Mn(H2L)(H2O)2](ClO4)2(MeOH) (1), [Co(H2L)(NCS)2] (2), [Cd(H2L)(H2O)2](ClO4)2 (3) and [Zn(H2L)(H2O)2](ClO4)2 (4), and a binuclear Cu(II) complex, [Cu2(L)2](ClO4)2 (5). In the complexes 1-4 the neutral ligand serves as a 3N,2O donor where the pyridine ring N, two azomethine N and two carbohydrazine oxygen atoms are coordinatively active, leaving the pyrazole-N atoms inactive. In the case of complex 5, each ligand molecule behaves as a 4N,O donor utilizing the pyridine N, one azomethine N, the nitrogen atom proximal to the azomethine of the remaining pendant arm and one pyrazole-N atom to one metal center and the carbohydrazide oxygen atom to the second metal center. The complexes 1-4 are pentagonal bipyramidal in geometry. In each case, the ligand molecule spans the equatorial plane while the apical positions are occupied by water molecules in 1, 3 and 4 and two N bonded thiocyanate ions in 2. In complex 5, the two Cu(II) centers have almost square pyramidal geometry (τ = 0.05 for Cu1 and 0.013 for Cu2). Four N atoms from a ligand molecule form the basal plane and the carbohydrazide oxygen atom of a second ligand molecule sits in the apex of the square pyramid. All the complexes have been X-ray crystallographically characterized. The Zn(II) and Cd(II) complexes show considerable fluorescence emission while the remaining complexes and the ligand molecule are fluorescent silent.  相似文献   

8.
Two structurally related flexible imidazolyl ligands, bis(N-imidazolyl)methane (L1) and 1,4-bis(N-imidazolyl)butane (L2), were reacted with Cu(II), Co(II) and Ni(II) salts of aliphatic/aromatic dicarboxylic acids resulting in the formation of a number of novel metal–organic coordination architectures, [CuB2(ox)2(L1)2(H2O)2] · 4H2O (1) (ox = oxalate), [Cu(pdc)(L2)1.5] · 4H2O (2, pdc = pyridine-2,6-dicarboxylate), [Co(L)2(H2O)2](tp) · 4H2O (3, tp = terephthalate), [Ni(L1)2(H2O)2](ip) · 5H2O (4, ip = isophthalate), [Cu2(L1)4(H2O)4](tp)2 · 7H2O (5), [Co(mal)(L1)(H2O)] · 0.5MeOH (6, mal = malonate), [Co(pdc)(L1)(H2O)] (7). All the complexes have been structurally characterized by X-ray diffraction analysis. The different coordination modes of the dicarboxylate anions, due to their chain length, rigidity and diimidazolyl functionality, lead to a wide range of different coordination structures. The coordination polymers exhibit 1D single chain, ladder, 2D sheet and 2D network structures. The aliphatic and aromatic dicarboxylates can adopt chelating μ2 and chelating-bridging μ3 coordination modes, or act as uncoordinated counter anions. The central metal ions are coordinated in N2O4, N4O2, N2O3 and N3O3 fashions, depending on the ancillary ligands. The topology of 1 gives rise to macrocycles which are connected through hydrogen bonds to form 1D chains, whereas compound 2 exhibits a 1D polymeric ladder in which the carboxylate acts as a pincer ligand. Compounds 35 show doubly bridged 1D chains, and the dicarboxylate groups are not coordinated but form 2D corrugated sheets with water molecules intercalated between the cationic layers. Compound 6 has a 2D network sheet structure in which each metal ion links three neighboring Co atoms by the bis(N-imidazolyl)methane ligand. The cobalt compound 7, with a 2D polymeric double sheet structure, is built from pincer carboxylate (pdc) and 1,4-bis(N-imidazolyl)methane ligands.  相似文献   

9.
An interesting series of nine new copper(II) complexes [Cu2L2(OAc)2]·H2O (1), [CuLNCS]·½H2O (2), [CuLNO3]·½H2O (3), [Cu(HL)Cl2]·H2O (4), [Cu2(HL)2(SO4)2]·4H2O (5), [CuLClO4]·½H2O (6), [CuLBr]·2H2O (7), [CuL2]·H2O (8) and [CuLN3]·CH3OH (9) of 2-benzoylpyridine-N(4)-phenyl semicarbazone (HL) have been synthesized and physico-chemically characterized. The tridentate character of the semicarbazone is inferred from IR spectra. Based on the EPR studies, spin Hamiltonian and bonding parameters have been calculated. The g values, calculated for all the complexes in frozen DMF, indicate the presence of the unpaired electron in the dx2-y2 orbital. The structure of the compound, [Cu2L2(OAc)2] (1a) has been resolved using single crystal X-ray diffraction studies. The crystal structure revealed monoclinic space group P21/n. The coordination geometry about the copper(II) in 1a is distorted square pyramidal with one pyridine nitrogen atom, the imino nitrogen, enolate oxygen and acetate oxygen in the basal plane, an acetate oxygen form adjacent moiety occupies the apical position, serving as a bridge to form a centrosymmetric dimeric structure.  相似文献   

10.
The new complexes [Co(ecpzdtc)3] (2) [Zn(ecpzdtc)2(py)] (3) and [Cd(ecpzdtc)2(py)]·H2O (4) have been synthesized from sodium 1-ethoxycarbonyl-piperazine-4-carbodithioate [(Na+(ecpzdtc)]. The ligand and the complexes have been characterized by elemental analyses, IR, magnetic susceptibility and single crystal X-ray data. The [Zn(ecpzdtc)2(py)] and [Cd(ecpzdtc)2(py)]·H2O complexes contain pyridine as the co-ligand. [Co(ecpzdtc)3] (2) crystallizes in the monoclinic system, whereas [Zn(ecpzdtc)2(py)] (3) and [Cd(ecpzdtc)2(py)]·H2O (4) crystallize in the triclinic system. The sulfur donor sites of the bidentate ligand chelate the metal center, forming a four-membered CS2M ring. The cobalt complex has a distorted octahedral geometry, the zinc complex is almost between trigonal bipyramidal and square pyramidal, whereas the cadmium complex is square pyramidal. The crystal structures of all the complexes are stabilized by various types of inter and intramolecular hydrogen bonding.  相似文献   

11.
Four copper(II) coordination polymers, {[Cu(pz(COO)2)(H2O)]4·HBr}n (1), {[Cu(pz(COO)2)(NH3)2]·H2O}n (2), {[Cu3H2(pz(COO)2)4(H2O)3]·2H2O}n (3) and {[Cu2(pz(COO)2)2(NH3)2(H2O)3][Cu(pz(COO)2)(NH3)(H2O)2][Cu(pz(COO)2)(NH3)(H2O)]·2H2O}n (4) were synthesized using pyrazine-2,3-dicarboxylic acid, CuBr2, 2-(2-aminoethylamino)ethanol/triethanol amine/ammonia in a methanol:water (1:1) solution, and the mixed ligand complexes were characterized by spectroscopic methods, thermal and elemental analysis, and magnetic susceptibility. Complexes 2 and 4 were also characterized by means of single crystal X-ray crystallography. The characterizations show that the complexes have polynuclear molecular structures, except for complex 2, and all of the complex structures form polymeric chains. Complex 4 has a pseudo-merohedral twin structure.  相似文献   

12.
Two diethyl phosphonated phosphine ligands of formula Ph2P(CH2)3PO3Et2 (ligand L) and Ph2P(4-C6H4PO3Et2) (ligand L′) were used to prepare different complexes of platinum(II) (1, cis-PtCl2L2; 2, trans-PtCl2L2·H2O; 3A and 3B, cis- and trans-PtCl2L′2) and palladium(II) (4, [PdCl2L]2; 5, trans-PdCl2L2·H2O; 6, trans-PdCl2L′2·CH2Cl2). The single-crystal X-ray structure analyses of complexes 1, 2, 4-6 indicate that complexation involved only the phosphine end, whereas the strong polarization of the PO bond was highlighted by the formation of hydrogen bonds with a water molecule in 2 and 5, and with a dichloromethane molecule in 6, with an exceptionally short CH?O hydrogen bond length (C?O separation 3.094(3) Å).  相似文献   

13.
The reactions of 2-(hydromethyl)pyridine, hmpH, with Ni(O2CMe)2·4H2O in H2O, in the absence of counterions, have been investigated. The synthetic study has led to the two new complexes [Ni(O2CMe)2(hmpH)2] (1) and [Ni4(O2CMe)4(hmp)4(H2O)2] (2). Complex 1 can also be transformed into 2 by reacting with an excess of NaOH in H2O. The structures of 1 and 2·2.25H2O·0.5(1,4-dioxane) have been solved by single-crystal, X-ray crystallography. The octahedral NiII center in centrosymmetric 1 is coordinated by two 1.10 (Harris notation) MeCO2 groups and two N,O-chelating (1.11) hpmH ligands. The tetranuclear cluster molecule of 2·2.25H2O·0.5(1,4-dioxane) possesses a distorted cubane {Ni43-OR′)4}4+ core [R′ = (2-pyridyl)CH2–] with the NiII ions and the oxygen atoms from the 3.31 hmp ligands occupying alternate vertices of the cube. Two 2.11 MeCO2 groups cap two opposite faces of the cube, while two 1.10 MeCO2 ions and two aqua ligands complete the octahedral coordination sphere of the metal centers. Characteristic IR bands for the two complexes are discussed in terms of the nature of bonding and the structures of the two complexes. The variable-temperature magnetic properties of 2 have been modeled with two J values, and reveal antiferromagnetic exchange interactions between the four NiII ions to give a diamagnetic ground state.  相似文献   

14.
Chiral and racemic Salen-type Schiff-base ligands (H2L1, H2L2 and H2L3), condensed between D-(+)- and D,L-camphoric diamine (also known as (1R,3S)-1,2,2-trimethylcyclopentane-1,3-diamine) and 2-hydroxybenzaldehyde or 3,5-dibromo-2-hydroxybenzaldehyde with a 1:2 molar ratio, have been synthesized and characterized. A series of new nickel(II), palladium(II) and copper(II) complexes of these chiral and racemic ligands exhibiting different coordination number (4, 5 and 6) have been characterized with the formulae [NiL1]·CH3OH (3), [NiL1]·H2O (4), [NiL2] (5), [PdL2] (6), [Cu2(L2)2(H2O)] (7) and [NiL3(DMF)(H2O)] (8). Different solvent molecules in 3 and 4 (methanol and water molecules) as well as different apical ligands in 7 and 8 (water and DMF molecules) are involved in different O–H···O hydrogen bonding interactions to further stabilize the structures. UV–Vis (UV–Vis), circular dichroism (CD) spectra and thermogravimetric (TG) analyses for the metal complexes have also been carried out.  相似文献   

15.
Five novel coordination polymers, [Co(bpb)2Cl2] (1), [Co(bpb)2(SCN)2] (2), [Cd(H4bpb)0.5(dmf)(NO3)2] (3), [Cd2(H4bpb)Br4] (4), and [Hg2(H4bpb)I4] (5) [bpb=N,N′-bis(3-pyridylmethyl)-1,4-benzenedimethyleneimine, H4bpb=N,N′-bis(3-pyridylmethyl)-1,4-benzenedimethylamine], were synthesized and their structures were determined by X-ray crystallography. In the solid state, complex 1 is a 1D hinged chain, while 2 has 2D network structure with the ligand bpb serving as a bridging ligand using its two pyridyl N atoms. The imine N atoms keep free of coordination and bpb acts as a bidentate ligand in both 1 and 2. Complexes 3, 4, and 5 with reduced bpb ligand, i.e. H4bpb, show similar 2D network structure, in which ligand H4bpb serves as a tetradentate ligand. Thermogravimetric analyses for complexes 1-5 were carried out and found that they have high thermal stability. The magnetic susceptibilities of compounds 1, 2 were measured over a temperature range of 75-300 K.  相似文献   

16.
Two novel cobalt(II) complexes, [Co(μ-succinato)(H2O)2(pyridine)2]n1 and {[Co2(μ-H2O)(μ-glutarato)2(pyridine)2]·pyridine}n2 have been synthesized by a wet chemistry method. In complex 1, the Co(II) ions are linked through succinate ligands to created one-dimensional polymeric chain along the b-axis. Complex 2 consists of a polymeric chain of dinuclear Co(II) moieties in which two cobalt(II) ions are linked through a bridging water and two bridging carboxylate groups from two glutarate ligands. The glutarate ligands in complex 2 display two coordination modes, interbinuclear bridging and intrabinuclear bridging. All the bond angles of the alkyl chain in complex 2 are between 115.7° and 118.5°, supporting the gauche conformation. Free pyridine molecules were found in the cavities between the chains. Two strong intramolecular hydrogen bonds are observed between the coordinated water and the uncoordinated carboxylate oxygen atom in both complexes. Complex 2 is further stabilized by π–π stacking of pyridine molecules. Complex 1 is a paramagnet (C = 3.50(1) cm3 K mol and θ = −5.0(5) K) and complex 2 exhibits a broad maximum at 4 K due to weak coupling within the dimeric unit.  相似文献   

17.
Five iron(II) coordination polymers, {[Fe(bte)2(NCS)2][Fe(bte)(H2O)2(NCS)2]}n (1), [Fe(bime)(NCS)2]n (2), [Fe(bime)(dca)2]n (3), [Fe(bime)2(N3)2]n (4) and [Fe(btb)2(NCS)2]n (5), were synthesized using the flexible ligands 1,2-bis(1,2,4-triazol-1-yl)ethane (bte), 1,2-bis(imidazol-1-yl)ethane (bime) and 1,4-bis(1,2,4-triazol-1-yl)butane (btb), together with NCS, dicyanamide (dca) and N3. The compound 1 contains two kinds of motifs (double chain and single chain) and forms a three-dimensional hydrogen bonded network; 2 and 3 contain one-dimensional triple chains; and 4 and 5 form two-dimensional (4, 4) networks. The coordination anions (NCS, dca and N3) and the structural characteristics of the ligands (bte, bime and btb) play an important role in the assembly of the topologies. Magnetic studies reveal that 1-5 remain in the high-spin state over the whole temperature range 2-300 K and no detectable spin-crossover is observed.  相似文献   

18.
The copper(II) complexes [Cu2(phen)2(HL1)2] (ClO4)2 (1) and [Cu2(phen)2(HL2)2] (ClO4)2 (2) synthesized from two potentially tridentate ligands N-(2-hydroxybenzyl) propanolamine (H2L1) and N-(5-methyl-2-hydroxybenzyl) propanolamine (H2L2) have centrosymmetric bis(μ2-phenoxo)-bridged dicopper(II) structures. Variable temperature magnetic measurements have revealed the existence of relatively weak antiferromagnetic interactions (1: 2J=−212.5, 2: 2J=−337.0 cm−1) with respect to the bridging angles (1: θ=101.47(18)°, 2: θ=102.79(12)°). The results suggest that the distortion index of the Cu(II) atoms (1: τ=0.73, 2: τ=0.53) may be the major factor governing the spin coupling between the copper(II) centers of these diphenoxo-bridged binuclear complexes. The coordination moieties of complex 1 are connected into a 1D linear structure via intermolecular hydrogen bonds between alkoxyl, amine, and perchlorate groups.  相似文献   

19.
New coordination polymers [M(Pht)(4-MeIm)2(H2O)]n (M=Co (1), Cu (2); Pht2−=dianion of o-phthalic acid; 4-MeIm=4-methylimidazole) have been synthesized and characterized by IR spectroscopy, X-ray crystallography, thermogravimetric analysis and magnetic measurements. The crystal structures of 1 and 2 are isostructural and consist of [M(4-MeIm)2(H2O)] building units linked in infinite 1D helical chains by 1,6-bridging phthalate ions which also act as chelating ligands through two O atoms from one carboxylate group in the case of 1. In complex 1, each Co(II) atom adopts a distorted octahedral N2O4 geometry being coordinated by two N atoms from two 4-MeIm, three O atoms of two phthalate residues and one O atom of a water molecule, whereas the square-pyramidal N2O3 coordination of the Cu(II) atom in 2 includes two N atoms of N-containing ligands, two O atoms of two carboxylate groups from different Pht, and a water molecule. An additional strong O-H?O hydrogen bond between a carboxylate group of the phthalate ligand and a coordinated water molecule join the 1D helical chains to form a 2D network in both compounds. The thermal dependences of the magnetic susceptibilities of the polymeric helical Co(II) chain compound 1 were simulated within the temperature range 20-300 K as a single ion case, whereas for the Cu(II) compound 2, the simulations between 25 and 300 K, were made for a linear chain using the Bonner-Fisher approximation. Modelling the experimental data of compound 1 with MAGPACK resulted in: g=2.6, |D|=62 cm−1. Calculations using the Bonner-Fisher approximation gave the following result for compound 2: g=2.18, J=-0.4 cm−1.  相似文献   

20.
It is of interest that the hydrous 3D metal-organic framework (MOF) {[Pb2(fum)2(H2O)4] · 2H2O}n (1) has been synthesized by the reaction of the fum dianion with the lead(II) ion (fum = fumarate) in the presence of pyrazole, while the anhydrous 3D MOF [Pb(fum)]n (2) is obtained by the reaction of the fum dianion with the lead(II) ion in the presence of pyrazine. These complexes were further characterized by FT-IR spectroscopy, thermogravimetric analysis (TG), X-ray analysis and solid state photoluminescence spectra. The arrangement of the ligands displays a coordination gap around the Pb atom, occupied possibly by a stereoactive lone pair of electrons on lead(II), with the coordination around both the eight-coordinated lead atom in 1 and six-coordinated lead atom in 2 exhibiting a hemidirected geometry. The fum ligand shows different ligation behavior toward the lead(II) ions in these complexes. These compounds exhibit photoluminescence with the maximum emission located in the UV region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号