首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Park MC  Hur JY  Kwon KW  Park SH  Suh KY 《Lab on a chip》2006,6(8):988-994
We present a simple cell docking method induced by receding meniscus to capture non-adherent yeast cells onto microwells inside a microfluidic channel. Microwells were fabricated either by capillary moulding of UV curable polyurethane acrylate (PUA) onto glass substrate or direct replica moulding of poly(dimethyl siloxane) (PDMS). A cell suspension of the budding yeast, Saccharomyces cerevisiae, was introduced into the microfluidic channel by surface tension driven capillary flow and a receding meniscus was subsequently generated by evaporation. As the meniscus progressed, one to multiple yeast cells were spontaneously captured onto microwells by lateral capillary force created at the bottom of the meniscus. Using this cell-based platform, we observed the response of yeast cells upon stimulation by a mating pheromone (alpha-factor) by monitoring the expression of green fluorescent protein (GFP) with time. It was observed that alpha-factor triggered the expression of GFP at 60 min after stimulation and the fluorescence intensity was sustained for an additional 60 min without changes.  相似文献   

2.
We report on reversible changes of the work function (WF) values of indium-tin-oxide (ITO) under prolonged ultraviolet (UV) and air exposure. The WF of ITO is reduced from 4.7 eV to 4.2 eV by photon absorption in ITO under UV illumination or an air mass 1.5 solar simulator (100 mW cm(-2)). Air or oxygen exposure is found to increase the WF of ITO (UV-exposed) to a value of 4.6 eV. These changes of ITO's WF lead to reversible variations of the performance of organic photovoltaic devices where ITO acts primarily as the electron collecting or hole collecting electrode. These variations can be reflected in the disappearance (or appearance) of an S-shaped kink in the J-V characteristics upon continuous UV or solar simulator illumination (or air exposure). This reversible phenomenon is ascribed to the adsorption and desorption of oxygen on the surface and grain boundaries of ITO. The use of surface modifiers to either decrease or increase the WF of ITO in organic photovoltaic devices with inverted and conventional geometries is also shown to be an effective route to stabilize the device performance under UV illumination.  相似文献   

3.
The aqueous dispersion of polyurethaneurea-acrylate (PUA) including small amount of fluorinated block copolymers containing carboxyl groups (PATF), which can be dissolved in water, was used to make films and the surface properties of these films were examined. The experimental data show that the modified PUA film exhibits a hydrophobic surface property, although the original surface of PUA film is hydrophilic. The surface composition of the modified PUA film was measured by ATR and XPS. The results indicate that there is a concentration gradient of the fluorine groups along the lines of thickness of the modified film and towards the outmost surface layer, resulting from the migration of fluorinated blocks to the air side surface of the modified PUA film during the film formation process. However, the PUA film can not be modified effectively by adding the sodium salt of PATF, since the urethane groups in the system are easy to occupy on the surface of the film.  相似文献   

4.
All-organic composites are widely used in energy storage application due to the high breakdown strength performance, but the improvement of energy storage was limited by the relatively low dielectric constant. Therefore, to satisfy the high demands of dielectric materials, energy storage properties of polymer composites should be further enhanced. In this article, poly(vinylidene fluoride-co-chlorotrifluoroethylene) (P(VDF-CTFE)) and polyurea (PUA), which are known as high dielectric ferroelectric material and linearly high energy storage efficiency material respectively, are composited through double layer (DL) casting method for the first time. The properties of DL structured composite film is contrasted with solution blending structure especially in energy storage efficiency, and the results demonstrate that DL structure design can make great use of advantages of two materials and also can avoid the influence of phase separation between P(VDF-CTFE) and PUA efficiently. Moreover, high breakdown strength (6180 kV/cm) and high energy storage efficiency (77%) of DL composites can be realized simultaneously by incorporating PUA as an insulating layer, and the mechanism is discussed in detail. This work provides an effective route to improve the energy storage properties of polymer dielectric materials and shows great application potential.  相似文献   

5.
UV-patternable organic-inorganic hybrid sol-gel coating was used to develop microchannel on silicon and glass wafers by photolithography processing. The sol-gel coating was formed with 3-methacryloxypropyltrimethoxysilane (MPTS) as photosensitive component and zirconium propoxide as property modifier. In order to enhance the UV light efficiency during photolithography processing for glass substrates, a thin copper layer with thickness of 100–200 nm was deposited on one side of the glass wafer. The closed microchannels were formed by bonding of two developed surface channels of compensating patterns by wafer bonding technology. The bonding material is the same as the channel body ensuring a uniform surface property for the microchannels. A thin layer of about 2 μm was applied on the developed channels by spin coating. The depth of the surface channels on each wafer is about 10–12 μm, and the height of the closed channels is therefore in the range of 22–24 μm. Different microfluidic devices such as chaotic micromixers and microsplitters were fabricated.  相似文献   

6.
A microfluidic device is used to generate a complex gradient of diffusible molecules in a static solution. The gradient is precise and steady both in space and in time. This device, made from poly(dimethylsiloxane), consists of three layers. The molecules in reservoirs on the top layer diffuse through the flat middle layer of hydrogel and reach an equilibrium distribution. Microfluidic channels on the bottom layer that are in close contact with the hydrogel contain free solution that has concentration gradients based on the gradient in the gel. The gradient profile in the channel can be designed to have an arbitrary form (within the range of the existing gradient in the hydrogel) by controlling the local direction of the channel at each point.  相似文献   

7.
Highly crosslinked aliphatic and aromatic polyurethane-acrylate (PUA) coatings have been obtained by photopolymerization of multifunctional monomers. The discoloration and chemical modifications occurring upon accelerated QUV aging were monitored by UV and IR spectroscopy. The polymers were found to undergo photooxidation and loss of carbamate and phenyl groups, with lower quantum yields (10?3 mol photon?1) than in related linear polymers. Hydroxy-phenyl benzotriazole UV-absorbers have a limited effect on the degradation rate, at the concentration used (0.5%). Hindered amines (HALS) are substantially more effective, especially in aliphatic PUA. A 20-fold increase in the stabilization efficiency was found with the UVA + HALS combination. Aromatic PUA are more difficult to stabilize, because of the strong absorption and photolysis of the phenyl group which yields colored products. Radical-induced oxidation is predominant in aliphatic PUA and develops with long kinetic chains, while in aromatic PUA it competes with direct photolysis.  相似文献   

8.
Polyamide samples were heated under vacuum or mixed in a Brabender plastograph. UV absorbance, chain end concentration, and molecular weight were studied. Postcondensation was observed for polyamide heated under vacuum. For polyamide samples mixed in the plastograph, atmosphere, shear rate, and temperature changed. Melt viscosity and intrinsic viscosity are in good correlation in a log-log plot. Oxidation effect on molecular weight and amine chain end concentration could be well related to UV absorbance. The oxygen diffusion into the molten polyamide is a critical parameter. The oxygen concentration in the polyamide mixed under air is ca. 20 times higher than when mixed under nitrogen. The introduction of preoxidized material in the molten polyamide or mixing in the presence of oxygen have similar effects. Postcondensation and oxidation strongly influence the melt behavior of polyamides. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
We formed monolayers and black lipid membranes (BLMs) of photopolymerizable lipids mixed with the channel-forming protein gramicidin A to evaluate their miscibility and the potential for improved stability of the BLM scaffold through polymerization. Analyses of surface pressure vs area isotherms indicated that gramicidin A dispersed with three different synthetic, polymerizable, diacetylene-containing phospholipids, 1,2-di-10,12-tricosadiynoyl-sn-glycero-3-phosphocholine (DTPC), 1,2-di-10,12-tricosadiynoyl-sn-glycero-3-phosphoethanolamine (DTPE), and 1-palmitoyl-2,10,12-tricosadiynoyl-sn-glycero-3-phosphoethanolamine (PTPE) to form mixed monolayers at the air-water interface on a Langmuir-Blodgett (LB) trough. Conductance measurements across a diacetylenic lipid-containing BLM confirmed dispersion of the gramicidin channel with the lipid layer and demonstrated gramicidin ion-channel activity before and after UV exposure. Polymerization kinetics of the diacetylenic films were monitored by film pressure changes at constant LB trough area and by UV-vis absorption spectroscopy of polymerized monolayers deposited onto quartz. An initial increase in film pressure of both the pure diacetylene lipid monolayers and mixed films upon exposure to UV light indicated a change in the film structure. Over the time scale of the pressure increase, an absorbance peak indicative of polymerization evolved, suggesting that the structural change in the lipid monolayer was due to polymerization. Film pressure and absorbance kinetics also revealed degradation of the polymerized chains at long exposure times, indicating an optimum time of UV irradiation for maximized polymerization in the lipid layer. Accordingly, exposure of polymerizable lipid-containing black lipid membranes to short increments of UV light led to an increase in the bilayer lifetime.  相似文献   

10.
The mechanism of cross-linking of poly(neopentyl isophthalate) (PNI) by photo-degradation in nitrogen atmosphere was investigated. The exposure of PNI to UV light resulted in gel (insoluble material) formation. The gel material was collected and the morphology of the gel material was characterized with SEM. The gel has the highest density near the coating surface. To obtain information on the cross-linking at a molecular level the gel was decomposed by methanolysis and the decomposition products were analysed with LC-MS. Besides the expected “grafting” types of cross-links (phenyl-to-phenyl coupling) also “chain coupling” types of cross-links were detected (recombination of neopentyl glycol based moieties). Analysis of samples that had been exposed to UV light in air indicates that the phenyl-to-phenyl coupling also occurs in the presence of oxygen.  相似文献   

11.
Studies of the density and the excess molar volume of ethylene glycol (EG)-water mixtures were carried out to illustrate the hydrogen bonding interactions of EG with water at different temperatures. The re-sults suggest that a likely complex of 3 ethylene glycol molecules bonding with 4 water molecules in an ethylene glycol-water mixture (EGW) is formed at the maximal excess molar volume,which displays stronger absorption capabilities for SO2 when the concentration of SO2 reaches 400×10?6 (volume ratio) in the gas phase. Meanwhile,FTIR and UV spectra of EGWs were recorded at various EG concentra-tions to display the hydrogen bonding interactions of EG with water. The FTIR spectra show that the stretching vibrational band of hydroxyl in the EGWs shifts to a lower frequency and the bending vibra-tional band of water shifts to a higher frequency with increasing the EG concentration,respectively. Furthermore,the UV spectra show that the electron transferring band of the hydroxyl oxygen in EG shows red shift with increasing the EG concentration. The frequency shifts in FTIR spectra and the shifts of absorption bands in UV absorption spectra of EGWs are interpreted as the strong hydrogen bonding interactions of the hydrogen atoms in water with the hydroxyl oxygen atoms of EG.  相似文献   

12.
The picoplanktonic cyanobacteria, Synechococcus spp., (Nägeli) are important contributors to global ocean primary production that can be stressed by solar radiation, both in the photosynthetically active (PAR) and ultraviolet (UV) range. We studied the responses of PSII quantum yield (active fluorescence), carbon fixation (14C assimilation) and oxygen evolution (membrane inlet mass spectrometry) in Synechococcus WH8102 under moderate UV and PAR. PSII quantum yield decreased during exposure to moderate UV and UV+PAR, with response to the latter being faster (6.4 versus 2.8 min, respectively). Repair processes were also faster when UV+PAR exposure was followed by moderate PAR (1.68 min response time) than when UV was followed by very low PAR (10.5 min response time). For the UV+PAR treatment, the initial decrease in quantum yield was followed by a 50% increase (“rebound”) after 7 min exposure, showing an apparent photoprotection induction. While oxygen uptake increased with PAR, it did not change under UV, suggesting that this oxygen‐dependent mechanism of photoprotection, which may be acting as an electron sink, is not an important strategy against UV. We used propyl gallate, an antioxidant, to test for plastid terminal oxidase (ptox) or ptox‐like enzymes activity, but it caused nonspecific and toxic effects on Synechococcus WH8102.  相似文献   

13.
Wu H  Huang B  Zare RN 《Lab on a chip》2005,5(12):1393-1398
A thin layer of polydimethylsiloxane (PDMS) prepolymer, which is coated on a glass slide, is transferred onto the embossed area surfaces of a patterned substrate. This coated substrate is brought into contact with a flat plate, and the two structures are permanently bonded to form a sealed fluidic system by thermocuring (60 degrees C for 30 min) the prepolymer. The PDMS exists only at the contact area of the two surfaces with a negligible portion exposed to the microfluidic channel. This method is demonstrated by bonding microfluidic channels of two representative soft materials (PDMS substrate on a PDMS plate), and two representative hard materials (glass substrate on a glass plate). The effects of the adhesive layer on the electroosmotic flow (EOF) in glass channels are calculated and compared with the experimental results of a CE separation. For a channel with a size of approximately 10 to 500 microm, a approximately 200-500 nm thick adhesive layer creates a bond without voids or excess material and has little effect on the EOF rate. The major advantages of this bonding method are its generality and its ease of use.  相似文献   

14.
During UV degradation of bisphenol A polycarbonate (BPA-PC), photo-Fries rearrangements and photo-oxidation reactions take place, however, in outdoor exposure conditions the photo-oxidation reaction is the most dominant one. To initiate this autocatalytic oxidation process, an initiating radical is required. In this research two possible sources for photo-initiation are explored, viz. hydroperoxides and peroxides formed by thermo-oxidation and charge transfer complexes between the polymer and oxygen. A comparison of the photodegradation rate of thermo-oxidized and undegraded polycarbonate samples was made. It was shown that the formed thermo-oxidation products in BPA-PC did not affect the photo-oxidation rate. Charge transfer complexes (CTCs) between oxygen and polycarbonate were studied by UV absorption spectroscopy at different air pressures. The concentration of CTCs increased with oxygen pressures. These CTCs absorb wavelengths in the region of terrestrial sunlight and could cause the initiation of the photo-oxidation. The influence of oxygen pressure on the photodegradation of BPA-PC was studied by irradiating the samples with a by the polymer absorbing wavelength, viz. 250 nm. The absorption of this wavelength leads to photo-Fries products. It was shown that at higher oxygen pressures the rate of the photo-Fries reaction is reduced, which was explained by quenching of the photo-Fries reaction by oxygen.  相似文献   

15.
In the past few years, the cellular effects of ultraviolet (UV) irradiation induced in skin have become increasingly recognized. Indeed, it is now well known that UV irradiation induces structural and cellular changes in all the compartments of skin tissue. The generation of reactive oxygen species (ROS) is the first and immediate consequence of UV exposure and therefore the quantitative determination of free radical reactions in the skin during UV radiation is of primary importance for the understanding of dermatological photodamage. The RSF method (radical sun protection factor) herein presented, based on electron spin resonance spectroscopy (ESR), enables the measurement of free radical reactions in skin biopsies directly during UV radiation. The amount of free radicals varies with UV doses and can be standardized by varying UV irradiance or exposure time. The RSF method allows the determination of the protective effect of UV filters and sunscreens as well as the radical induction capacity of self-tanning agents as dihydroxyacetone (DHA). The reaction of the reducing sugars used in self-tanning products and amino acids in the skin layer (Maillard reaction) leads to the formation of Amadori products that generate free radicals during UV irradiation. Using the RSF method three different self-tanning agents were analyzed and it was found, that in DHA-treated skin more than 180% additional radicals were generated during sun exposure with respect to untreated skin. For this reason the exposure duration in the sun must be shortened when self-tanners are used and photoaging processes are accelerated.  相似文献   

16.
Zero order release of a drug from monolithic polymer devices fails because the drug concentration gradient within the matrix falls with time. In principle, it should be possible to maintain this concentration gradient constant via the introduction of a ratelimiting barrier to solute diffusion at the surface of the device. In this study, progesterone-dispersed monolithic devices were prepared from either polyhydroxyethyl methacrylate (HEMA) or a copolymer of HEMA and methoxyethoxyethyl methacrylate (MEEMA). These monolithic devices were soaked in an ethanol solution of ethylene glycol dimethacrylate (EGDMA) followed by exposure to UV light to create a crosslinked zone at the outer edge. The cross-linked zone has a much lower permeability to solute than the central region of the device and therefore serves as a rate-limiting barrier. Progesterone release studies demonstrated a zero order release from devices with the crosslinked outer layer. Drug release rates were dependent upon the UV treatment time, the EGDMA concentration, and the device soaking time in the EGDMA solution.  相似文献   

17.
The photodecomposition of dimethyl methylphosphonate (DMMP) and trimethyl phosphate (TMP) adsorbed on monoclinic WO3 powders when irradiated by ultraviolet light (UV) in air, oxygen, and under evacuation was investigated using infrared spectroscopy (IR). The IR spectra show that DMMP decomposes into methyl phosphonate upon exposure to 254 nm UV for 2 h at room temperature in air. The same decomposition of DMMP occurs only at temperatures above 300°C without UV illumination. TMP differs from DMMP in that the photodecomposition product is not the same as the decomposition product obtained by heating above 300°C. Thermal decomposition leads to formation of a phosphate on the surface, whereas photodecomposition leads to the same adsorbed methyl phosphonate as found for the thermal or photodecomposition of DMMP. Since TMP does not contain a P-CH3 bond, the formation of a methyl phosphonate on the surface after UV illumination involves a mechanism where CH3 groups migrate from the methoxy group to the phosphorous central atom. No decomposition is observed at room temperature when DMMP or TMP adsorbed on WO3 is irradiated under vacuum or in nitrogen atmosphere. Therefore, the photodecomposition of either DMMP or TMP adsorbed on WO3 at room temperature does not involve a reaction with the lattice oxygen but rather a reaction with the oxygen radicals produced by the decomposition of ozone.  相似文献   

18.
In this study, the role of oxygen in the regeneration of Fe(III) during the degradation of atrazine in UV/Fe(III) process was studied. The degradations of atrazine in UV/Fe(III) and UV-photolysis processes in the presence and absence of oxygen were compared. The results showed that the degradations of atrazine in these processes followed the pseudo-first-order kinetics well. The process exhibiting the highest rate constant (k) was UV/Fe(III)/air process, because k-value for UV/Fe(III)/air process was about 1.47, 2.23 and 2.56 times of those for UV/Fe(III)/N2, UV/air and UV/N2 processes, respectively. The degradation of atrazine was enhanced by oxygen in UV/Fe(III) process and the enhancement was more remarkable at higher initial concentrations of Fe(III). The investigation into the changes of Fe(III) concentrations demonstrated that the presence of oxygen led to the regeneration of Fe(III), which resulted in the enhancement of atrazine degradation. With air bubbling, the ferric ions were 25% more than those with N2 bubbling. The experimental data showed the regeneration of Fe(III) required the excited organic molecules and oxygen and on the basis of these results, the regeneration mechanism of Fe(III) was proposed. It was also found that due to the oxidation of Fe(II), the degradation of atrazine in UV/Fe(II)/air process was effective at a low Fe(II) concentration of 7 mg/L, similar to that in UV/Fe(III)/air process. This study makes clear the role of oxygen in the regeneration of Fe(III), and thus it provides a guide to reduce the input of Fe(III) and is helpful to the application of UV/Fe(III) process in practice.  相似文献   

19.
In this study, three hydrophilic monomers; 2-acrylamido-2-methyl-1-propanesulfonic acid, 2-hydroxyethyl methacrylate, diallyldimethylammonium chloride (DADMAC) were selected and their performance as an antistatic finish on nylon 6,6 fabrics was investigated. A non-thermal, high density atmospheric pressure plasma was used to graft polymerize the monomers on nylon 6,6 fabrics. Fabrics were first treated with solutions of monomer in water, air dried and then treated with helium plasma to graft polymerize the monomer on the fiber surface. Surface resistivity values were measured before and after soxhlet extraction with water. Results showed that the DADMAC monomer provided better antistatic properties to fabrics. Further studies with DADMAC monomer were made; effects of plasma post exposure time, plasma pre-exposure time, plasma power, concentration of the monomer and existence of a crosslinker were investigated. Higher plasma power, higher concentration of the monomer and longer post exposure times all gave better antistatic properties to the nylon 6,6 fabrics. Acid dye staining, UV–Vis and FT-IR measurements were conducted and results confirmed a grafted poly-DADMAC layer on the fabric surface.  相似文献   

20.
Growth initiation and film nucleation in atomic layer deposition (ALD) is important for controlling interface composition and achieving atomic-scale films with well-defined composition. Ruthenium ALD is studied here using ruthenocene and oxygen as reactants, and growth initiation and nucleation are characterized on several different growth surfaces, including SiO2, HfO2, and hydrogen terminated silicon, using on-line Auger electron spectroscopy and ex-situ X-ray photoelectron spectroscopy. The time needed to reach the full growth rate (typically approximately 1 A per deposition cycle) is found to increase as the surface energy of the starting surface (determined from contact angle measurements) decreased. Growth starts more readily on HfO2 than on SiO2 or Si-H surfaces, and Auger analysis indicates distinct differences in surface reactions on the various surfaces during film nucleation. Specifically, surface oxygen is consumed during ruthenocene exposure, so the nucleation rate will depend on the availability of oxygen and the energetics of surface oxygen bonding on the starting substrate surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号