首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 249 毫秒
1.
A quartz crystal microbalance DNA biosensor based on plasma prepared polythiophene /titanium dioxide (PT/TiO2) nanocomposite was developed for the detection of genetically modified organisms (GMOs). DNA hybridization was studied by quartz crystal microbalance (QCM) and cyclic voltammetry (CV) measurements. Single stranded DNA probes were immobilized on the PT/TiO2 coated quartz crystal electrode and the hybridization between the immobilized probe and the target complementary sequence in solution was monitored. The developed QCM-DNA biosensor represented promising results for a real-time, label-free, direct detection of DNA samples for the screening of genetically modified organisms.  相似文献   

2.
Kurosawa S  Aizawa H  Park JW 《The Analyst》2005,130(11):1495-1501
A quartz crystal microbalance (QCM) immunosensor was developed for the detection of 2,3,7,8-tetrachlorodibenzo-p-dioxins (TCDD) in environmental pollutants. An anti-TCDD antibody was immobilized on the gold surface of the QCM via chemical coupling, and its immunologic activity was then maintained by treatment with an artificial stabilizing reagent such as poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate). A competitive immunoreaction with TCDD conjugated ovalbumin (TCDD-ovalbumin) was used to detect TCDD. A calibration curve was obtained through the competitive immunoreaction, and linearity was shown from 100 ng mL(-1) to 0.1 ng mL(-1). Also, the cross-reactivities of the anti-TCDD monoclonal antibody were thoroughly evaluated with several TCDD derivatives. The relationships between GC-MS, ELISA, and QCM were compared using fly ash samples from a municipal solid waste, which were prepared using an accelerated solvent extractor. For 23 samples, the experimental relationship between the TCDD concentration by QCM vs. the TCDD concentration by ELISA was y= 1.07x + 2.70, r= 0.99, and the TCDD concentration by QCM vs. the toxic equivalent quantity (TEQ) value by GC-MS was y= 2.46x - 14.98, r= 0.89.  相似文献   

3.
The use of a quartz crystal microbalance (QCM) for monitoring in situ the immobilization of single-strand DNA marked with mercaptol group at the 5′-end on the surface of a gold-filled 7.995 MHz AT-cut quartz crystal by Au-S bond with the self-assembly technique is reported. The hybridization of ssDNA with complementary 10-mer ODN and 8-mer ODN is described. The QCM was also employed to analyze DNA cleavage by cerium(IV) ions under moderate conditions. The results showed that the QCM, which is capable of sensitive measurement, was able to investigate the immobilization, hybridization, and cleavage of ssDNA in situ. The cerium(IV) ions produced no cleavage in double-strand DNA; they were, however, able to hydrolyze single-strand DNA. Thus, the hydrolytic cleavage of ssDNA at a specific site could be ensured by protective hybridization.__________From Zhurnal Analiticheskoi Khimii, Vol. 60, No. 8, 2005, pp. 877–880.Original English Text Copyright © 2005 by Zhu, Gao, Shen, Yang, Yuan.The text was submitted by the authors in English.  相似文献   

4.
应用自组装膜技术在压电石英晶振金电极表面自组装一带羧基的巯基丙酸单层膜,通过盐酸1-乙基-3-(3-二甲基氨基丙基)碳二亚胺及N-羟基琥珀酰亚胺共价固定32KD的日本血吸虫分子抗原(SjAg32),设计了石英晶振微天平免疫传感器,用于测定日本血吸虫抗体.比较了巯基自组装单层膜与HEMA-MMA共聚物涂层修饰的石英晶振在溶液中的振荡行为,发现巯基自组装单层膜修饰的石英晶振稳定快,且稳定性好.在优化条件下,测得IRS(49-2000)的滴度为1:1500.此外,对不同程度血吸虫感染的兔血清进行了测试,结果表明,该传感器能较好地定量区别血吸虫感染程度.  相似文献   

5.
采用自组装技术,将 5′端标记有巯基的 20-merODN(oligo 1)以金 硫键形式牢固结合在 7. 995MHz的AT-切石英晶体的镀金表面,然后由石英晶体微天平实时检测了与碱基序列互补的 10 merODN (oligo 2)和 8 merODN(oligo 3)的杂交,同时还研究了稀土金属铈离子在温和条件下对DNA的水解切断作用.结果表明:应用QCM方法可能实时检测DNA的固定和杂交,Ce(IV)能随机切断单链DNA;但不能切断杂交形成的双链DNA,因此可利用杂交保护的方法对单链DNA实行定位切断.  相似文献   

6.
The quartz crystal microbalance (QCM) technique has been developed into a powerful tool for the study of solid-fluid interfaces. This study focuses on the applications of QCM in high-pressure carbon dioxide (CO2) systems. Frequency responses of six QCM crystals with different electrode materials (silver or gold) and roughness values were determined in helium, nitrogen, and carbon dioxide at 35-40 degrees C and at elevated pressures up to 3200 psi. The goal is to experimentally examine the applicability of the traditional QCM theory in high-pressure systems and determine the adsorption of CO2 on the metal surfaces. A new QCM calculation approach was formulated to consider the surface roughness contribution to the frequency shift. It was found that the frequency-roughness correlation factor, Cr, in the new model was critical to the accurate calculation of mass changes on the crystal surface. Experiments and calculations demonstrated that the adsorption (or condensation) of gaseous and supercritical CO2 onto the silver and gold surfaces was as high as 3.6 microg cm(-2) at 40 degrees C when the CO2 densities are lower than 0.85 g cm(-3). The utilization of QCM crystals with different roughness in determining the adsorption of CO2 is also discussed.  相似文献   

7.
Lee YG  Chang KS 《Talanta》2005,65(5):1335-1342
Bovine ephemeral fever (BEF) is a viral disease of cattle. A flow type quartz crystal microbalance (QCM) immunosensor was developed for the real time determination BEF virus (BEFV) that is suitable for clinical point-case diagnosis. Self-assembled monolayer (SAM) of thiols and sulphides by the cystamine–glutaraldehyde method was used for the immobilization of BEFV monoclonal antibody on the gold surface of a quartz crystal microbalance (QCM). A positive correlation was found between the virus concentration and frequency changes (R2 = 0.9962) on this QCM system. The reproducible rates for the 50 and 10 μg/mL samples were 4 and 13.9%, respectively. There was no interference from non-specifically adsorbed phage. Using this flow type QCM immunosensor, BEFV could specifically be detected with sensitivity comparable to a conventional enzyme-linked immunosorbent assay (ELISA). The measurement could be obtained directly, within several minutes, rather than hours as required visualizing the results of ELISA. In addition, the observation of reproducible and constant changes after successive additions of BEFV suggests that a QCM immunosensor in a flow cell could be developed for automated or continuous real time operation.  相似文献   

8.
Yoshimoto et al. [Anal. Chem. 2002, 74, 4306-4309] reported that a quartz crystal microbalance or QCM changed its response to sucrose solutions according to its angle of immersion. The effect was tentatively attributed to gravity-caused stress on the viscous interface between the oscillator and the bulk solution. The present work reports results from QCM experiments carried out so that any effect of gravity on the interfacial region would be magnified. This permitted use of a lower-frequency, less-sensitive QCM. Molecules of DNA were tethered to a functionalized QCM surface and then extended in steps, via sandwich hybridization, to produce DNA of uniform and known length. This feature allowed both the effect of QCM immersion angle and the relationship between frequency and molecular length to be investigated simultaneously. Comparison of acoustic wave damping at 0 degrees and 180 degrees immersion angles offers compelling evidence that the interfacial region expands when the active face of the QCM is down and contracts when it is up. This is apparently a consequence of the interfacial region being more dense than the bulk solution. The results are consistent with (a) slow gravity-driven movement of molecules away from a down-facing QCM, (b) rapid hybridization-driven movement away from an up-facing QCM, and (c) a QCM frequency response that decreases according to a simple exponential function of the tethered molecules' radius of gyration.  相似文献   

9.
Zhang Y  Lin F  Zhang Y  Li H  Zeng Y  Tang H  Yao S 《Analytical sciences》2011,27(12):1229-1235
A new method for the detection of point mutation in DNA based on the monobase-coded cadmium tellurium nanoprobes and the quartz crystal microbalance (QCM) technique was reported. A point mutation (single-base, adenine, thymine, cytosine, and guanine, namely, A, T, C and G, mutation in DNA strand, respectively) DNA QCM sensor was fabricated by immobilizing single-base mutation DNA modified magnetic beads onto the electrode surface with an external magnetic field near the electrode. The DNA-modified magnetic beads were obtained from the biotin-avidin affinity reaction of biotinylated DNA and streptavidin-functionalized core/shell Fe(3)O(4)/Au magnetic nanoparticles, followed by a DNA hybridization reaction. Single-base coded CdTe nanoprobes (A-CdTe, T-CdTe, C-CdTe and G-CdTe, respectively) were used as the detection probes. The mutation site in DNA was distinguished by detecting the decreases of the resonance frequency of the piezoelectric quartz crystal when the coded nanoprobe was added to the test system. This proposed detection strategy for point mutation in DNA is proved to be sensitive, simple, repeatable and low-cost, consequently, it has a great potential for single nucleotide polymorphism (SNP) detection.  相似文献   

10.
Gao N  Dong J  Liu M  Ning B  Cheng C  Guo C  Zhou C  Peng Y  Bai J  Gao Z 《The Analyst》2012,137(5):1252-1258
A quartz crystal microbalance (QCM) sensor based on molecularly imprinted ultra-thin films was developed for detecting profenofos in real samples. Films prepared by physical entrapment (MIP-A) and in situ self-assembly (MIP-B) were compared. The results indicated that the best sensing signal was obtained through the in situ self-assembly method. The QCM sensor chip was pretreated with 11-mercaptoundecanoic acid (MUA) to form a self-assembled monolayer (SAM), and then polymer films were immobilized directly on the SAM using surface-initiated radical polymerization. In this paper, all detection experiments were taken in air. The reaction was processed in solution, and the electrode was washed with deionized water and dried with N(2) before QCM measurement. The film was characterized by a scanning electron microscope (SEM), AC impedance and cyclic voltammetry. Analysis of the QCM response in the presence of different concentrations of profenofos showed a good linear correlation during 1.0 × 10(-8) to 1.0 × 10(-5) mg mL(-1) (y = 5log x + 42.5, R = 0.9960) and 1.0 × 10(-5) to 1.0 × 10(-3) mg mL(-1) (y = 25.86log x + 146, R = 0.9959), respectively. The MIP-QCM sensor was used to detect profenofos in tap water, and showed good recovery and repeatability.  相似文献   

11.
The Binding of nonylphenol to respective antibodies immobilized on solid substrates was studied with the methods of total internal reflection ellipsometry (TIRE) and QCM (quartz crystal microbalance) impedance spectroscopy. The binding reaction was proved to be highly specific having an association constant of KA=1.6x10(6) mol(-1) L and resulted in an increase in both the adsorbed layer thickness of 23 nm and the added mass of 18.3 microg/cm2 at saturation. The obtained responses of both TIRE and QCM methods are substantially higher than anticipated for the immune binding of single molecules of nonylphenol. The mechanism of binding of large aggregates of nonylphenol was suggested instead. Modeling of the micelle of amphiphilic nonylphenol molecules in aqueous solutions yielded a micelle size of about 38 nm. The mechanism of binding of large molecular aggregates to respective antibodies can be extended to other hydrophobic low-molecular-weight toxins such as T-2 mycotoxin. The formation of large molecular aggregates of nonylphenol and T-2 mycotoxin molecules on the surface was proved by the AFM study.  相似文献   

12.
A quartz crystal microbalance sensor (QCM) was developed for sensitive and specific detection of Salmonella enterica serovar typhimurium cells in food samples by integrating a magnetic bead purification system. Although many sensor formats based on bioaffinity agents have been developed for sensitive and specific detection of bacterial cells, the development of robust sensor applications for food samples remained a challenging issue. A viable strategy would be to integrate QCM to a pre-purification system. Here, we report a novel and sensitive high throughput strategy which combines an aptamer-based magnetic separation system for rapid enrichment of target pathogens and a QCM analysis for specific and real-time monitoring. As a proof-of-concept study, the integration of Salmonella binding aptamer immobilized magnetic beads to the aptamer-based QCM system was reported in order to develop a method for selective detection of Salmonella. Since our magnetic separation system can efficiently capture cells in a relatively short processing time (less than 10 min), feeding captured bacteria to a QCM flow cell system showed specific detection of Salmonella cells at 100 CFU mL−1 from model food sample (i.e., milk). Subsequent treatment of the QCM crystal surface with NaOH solution regenerated the aptamer-sensor allowing each crystal to be used several times.  相似文献   

13.
The effect of the surface chemistry of DNA recognition interfaces on DNA hybridization at a gold surface was investigated using both electrochemistry and the quartz crystal microbalance (QCM) technique. Different DNA recognition interfaces were prepared using a two-component self-assembled monolayer consisting of thiolated 20-mer probe single-stranded DNA (ss-DNA) containing either a 3'-mercaptopropyl or a 3'-mercaptohexyl linker group and an alcohol-terminated diluent layer with 2-, 6-, or 11-carbon length. The influence of the interfacial design on the hybridization efficiency, the affinity constant (Ka) describing hybridization, and the kinetics of hybridization was assessed. It was found that the further the DNA was above the surface defined by the diluent layer the higher the hybridization efficiency and Ka. The kinetics of DNA hybridization was assessed using both a QCM and an electrochemical approach to ascertain the influence of the interface on both the initial binding of target DNA to the surface and the formation of a complete duplex. These measurements showed that the length of the diluent layer has a large impact on the time taken to form a perfect duplex but no impact on the initial recognition of the target DNA by the immobilized probe DNA.  相似文献   

14.
《中国化学快报》2020,31(8):2150-2154
Ordered mesoporous carbon (OMCs) FDU-15 was synthesized through an EISA (Evaporation-Induced Self-Assembly) method, and the oxidized OMCs (FDU-15-COOH) were obtained by subsequent oxidation treatments in liquid phase to introduce functional groups. The samples were characterized by XRD, TEM, FT-IR and nitrogen adsorption-desorption test. The low humidity sensing performances of FDU-15 and FDU-15-COOH thin films were investigated by using a quartz crystal microbalance (QCM) transducer. The responses of FDU-15-COOH is higher than that of the pristine FDU-15 at very low humidity (< 729 ppmv) with high long-term stability, implying that FDU-15-COOH is a good candidate for low humidity QCM sensor.  相似文献   

15.
The adsorption of anionic phospholipids on silica was investigated by the dissipative quartz crystal microbalance (QCM) technique. Liposomes composed of 1 mM 80:20 mol % of 1-palmitoyl-2-oleyl-sn-glycero-3-phosphatidylcholine (POPC)/phosphatidic acid, POPC/phosphatidylglycerol, or POPC/phosphatidylserine in N-(2-hydroxyethyl)piperazine-N'-(2-ethanesulfonic acid) buffer at pH 7.4 (with or without 3 mM of CaCl2) were examined. We have previously demonstrated that similar phospholipid coatings can be used in capillary electrochromatography as a stationary phase for the separation of analytes. In this work, we focus on the formation of the coatings and on the type of lipid structure formed on silica. The QCM investigation comprised qualitative results based on changes in frequency and resistance, and quantitative modeling of the obtained results. The latter was performed using the dissipative QCM, which measures the quartz crystal impedance, combined with equivalent circuit analysis. A previously developed coating and cleaning procedure for phospholipid-coated fused silica capillaries was adopted in this study, and the same silica-coated crystal was used throughout the QCM study. We will demonstrate in this work that the type of lipid structure formed on silica, that is, a rather rigid supported lipid bilayer or a viscoelastic supported vesicle layer (SVL), is highly dependent on the lipid and solvent composition. We also show for the first time that the modeling of the dissipative QCM data can be used to extract a more quantitative picture of an adsorbed SVL, because, so far, published studies have merely used the QCM data in a qualitative sense.  相似文献   

16.
ABSTRACT

In this study, a quartz crystal microbalance (QCM) nanosensor was prepared to detect tryptophan. QCM nanosensor was prepared through the formation of tryptophan memories on the gold surface of QCM electrode using Methacryloylamidohistidine-Cu(II)-tryptophan ([MAH-Cu(II)]-tryptophan) pre-organised monomer system. The designed pre-organised monomer system was characterised by use of Fourier Transform Infrared (FTIR) and Atomic Force Microscope (AFM) was used to characterise the QCM nanosensors. After the characterisation studies, imprinted and non-imprinted sensors were connected to QCM system to determine the binding of the target molecule, selectivity and the detection of the amount of target molecule in real samples. The results showed that the imprinted QCM nanosensor had high selectivity for tryptophan.  相似文献   

17.
Bunde RL  Jarvi EJ  Rosentreter JJ 《Talanta》2000,51(1):159-171
To date, no experimental technique has been used to monitor DNA-protein crosslink formation in real-time. Real-time data is important for understanding the underlying chemical mechanisms associated with this reaction process. Here, the novel adaptation of existing piezoelectric quartz crystal (PQC) or quartz crystal microbalance (QCM) technology was used to monitor, in real-time, the formation of a crosslink bond induced by formaldehyde between lysine and guanine. Previous results showed complexes of lysine and guanine constitute a major portion of the DNA-protein crosslinks formed. Thus, poly-lysine(5) and poly-deoxyguanosine(11) were used as a model system to develop this detection method. Poly-lysine(5) was immobilized on QCM electrode surfaces by covalent attachment through polyethylenimine (PEI). Immobilization was confirmed by the decrease in dry QCM frequency; data consistency suggested uniform coatings were produced. The QCM sensor was configured within a thermostatic environmental chamber. The system was calibrated and baseline responses to variations in the analyte solution matrix were identified. QCMs with immobilized poly-lysine(5) were placed in contact with formaldehyde and poly-deoxyguanosine(11), and crosslink formation was monitored in real-time. Crosslink formation was verified through evaluation of controls. Control assays indicated some of the frequency signal was as aresult of non-specific association. Further assays were conducted after saturation of non-specific binding. This real-time data represents a significant advancement in the state of knowledge of the crosslinking process and provides the experimental foundation for further QCM crosslink investigations.  相似文献   

18.
A mass sensitive quartz crystal microbalance (QCM) based genosensor has been developed using breast cancer 1 (BRCA1) gene as a model gene. We modified the traditional sandwich assay by conjugating reporter probe DNA (DNA-r) with an assembly of gold nanoparticles leading to an increased mass on the surface, which enhanced the sensitivity to few orders of magnitude. The unique cleavage function of endonuclease is used for achieving the selectivity to complementary DNA over mismatched DNA. With this combination, the sensor exhibited excellent sensitivity with a detection limit of 10 aM BRCA1 gene and it showed good selectivity for even single base mismatch DNA targets. This ultrasensitive and cost-effective DNA detection protocol can be extended to the direct analysis of any non-amplified genomic DNA.  相似文献   

19.
20.
Contact of a polymer gel made from a styrene/ethylene-butene/styrene triblock copolymer in mineral oil was investigated by bringing the gel into contact with the coated surface of a quartz crystal microbalance (QCM). The experimental apparatus enabled simultaneous measurement of the load, displacement, and contact area, in addition to the resonant frequency and dissipation of the oscillating quartz crystal. The QCM response was determined by the linear viscoelastic properties of the gel at the frequency of oscillation. A geometric correction factor involving the contact area provided a means for quantitatively determining these viscoelastic parameters as the gel spread over the QCM surface. When the gel was removed from the surface, a thin solvent layer was left behind. The thickness of this solvent layer was determined from the QCM response and was compared to predictions from a simple model involving the disjoining pressure of the film and the osmotic pressure of the gel. Qualitative agreement with the model required that tensile, adhesive forces at the perimeter of the gel/QCM contact area were taken into account when calculating the film thickness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号