首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three new europium complexes, [Eu(PBI)3.3H2O] (1), [Eu(PBI)3.2TOPO] (2), and [Eu(PBI)3.2TPPO.H2O] (3) (where HPBI, TOPO, and TPPO stand for 3-phenyl-4-benzoyl-5-isoxazolone, tri-n-octylphosphine oxide, and triphenylphosphine oxide, respectively), with different neutral ligands were synthesized and characterized by elemental analysis, Fourier transform infrared, (1)H NMR, thermogravimetric analysis, and photoluminescence (PL) spectroscopy. The coordination geometries of the complexes were calculated using the Sparkle/AM1 (Sparkle Model for the Calculation of Lanthanide Complexes within the Austin Model 1) model. The ligand-Eu3+ energy-transfer rates were calculated in terms of a model of the intramolecular energy-transfer process in lanthanide coordination compounds reported in the literature. The room-temperature PL spectra of the europium(III) complexes are composed of the typical Eu3+ red emission, assigned to transitions between the first excited state (5D0) and the multiplet (7F(0-4)). On the basis of emission spectra and lifetimes of the 5D0-emitting level, the emission quantum efficiency (eta) was determined. The results clearly show that the substitution of water molecules by TOPO leads to greatly enhanced quantum efficiency (i.e., 26% vs 92%) and longer 5D0 lifetimes (250 vs 1160 micros). This can be ascribed to a more efficient ligand-to-metal energy transfer and a less nonradiative 5D0 relaxation process. Judd-Ofelt intensity parameters (Omega2 and Omega4) were determined from the emission spectra for the Eu3+ ion based on the 5D0 --> 7F2 and 5D0 --> 7F4 electronic transitions, respectively, and the 5D0 --> 7F1 magnetic-dipole-allowed transition was taken as the reference. A point to be noted in these results is the relatively high value of the Omega2 intensity parameter for all of the complexes. This may be interpreted as being a consequence of the hypersensitive behavior of the 5D0 --> 7F2 transition. The dynamic coupling mechanism is, therefore, dominant, indicating that the Eu3+ ion is in a highly polarizable chemical environment.  相似文献   

2.
Pure and europium (Eu(3+)) doped ZrO(2) synthesized by an oil-in-water microemulsion reaction method were investigated by in situ and ex situ X-ray diffraction (XRD), ex situ Raman spectroscopy, high-resolution transmission electron microscopy (HRTEM), steady state and time-resolved photoluminescence (PL) spectroscopies. Based on the Raman spectra excited at three different wavelengths i.e. 488, 514 and 633 nm and measured in the spectral range of 150-4000 cm(-1) the correlation between the phonon spectra of ZrO(2) and luminescence of europium is clearly evidenced. The PL investigations span a variety of steady-state and time resolved measurements recorded either after direct excitation of the Eu(3+) f-f transitions or indirect excitation into UV charge-transfer bands. After annealing at 500 °C, the overall Eu(3+) emission is dominated by Eu(3+) located in tetragonal symmetry lattice sites with a crystal-field splitting of the (5)D(0)-(7)F(1) emission of 20 cm(-1). Annealing of ZrO(2) at 1000 °C leads to a superposition of Eu(3+) emissions from tetragonal and monoclinic lattice sites with monoclinic crystal-field splitting of 200 cm(-1) for the (5)D(0)-(7)F(1) transition. At all temperatures, a non-negligible amorphous/disordered content is also measured and determined to be of monoclinic nature. It was found that the evolutions with calcination temperature of the average PL lifetimes corresponding to europium emission in the tetragonal and monoclinic sites and the monoclinic phase content of the Eu(3+) doped ZrO(2) samples follow a similar trend. By use of specific excitation conditions, the distribution of europium on the amorphous/disordered surface or ordered/crystalline sites can be identified and related to the phase content of zirconia. The role of zirconia host as a sensitizer for the europium PL is also discussed in both tetragonal and monoclinic phases.  相似文献   

3.
Biju S  Raj DB  Reddy ML  Kariuki BM 《Inorganic chemistry》2006,45(26):10651-10660
New tris(heterocyclic beta-diketonato)europium(III) complexes of the general formula Eu(PBI)3.L [where HPBI = 3-phenyl-4-benzoyl-5-isoxazolone and L = H2O, 2,2'-bipyridine (bpy), 4,4'-dimethoxy-2,2'-bipyridine (dmbpy), 1,10-phenanthroline (phen), or 4,7-diphenyl-1,10-phenanthroline (bath)] were synthesized and characterized by elemental analysis, Fourier transform infrared spectroscopy (FT-IR), 1H NMR, high-resolution mass spectrometry, thermogravimetric analysis, and photoluminescence (PL) spectroscopy. Single-crystal X-ray structures have been determined for the complexes Eu(PBI)3.H2O.EtOH and Eu(PBI)3.phen. The complex Eu(PBI)3.H2O.EtOH is mononuclear, and the central Eu3+ ion is coordinated by eight oxygen atoms to form a bicapped trigonal prism coordination polyhedron. Six oxygens are from the three bidentate HPBI ligands, one is from a water molecule, and another is from an ethanol molecule. On the other hand, the crystal structure of Eu(PBI)3.phen reveals a distorted square antiprismatic geometry around the europium atom. The room-temperature PL spectra of the europium(III) complexes are composed of the typical Eu3+ red emission, assigned to transitions between the first excited state (5D0) and the multiplet (7F0-4). The results demonstrate that the substitution of solvent molecules by bidentate nitrogen ligands in Eu(PBI)3.H2O.EtOH richly enhances the quantum yield and lifetime values. To elucidate the energy transfer process of the europium complexes, the energy levels of the relevant electronic states have been estimated. Judd-Ofelt intensity parameters (Omega2 and Omega4) were determined from the emission spectra for Eu3+ ion based on the 5D0 --> 7F2 and 5D0 --> 7F4 electronic transitions, respectively, and the 5D0 --> 7F1 magnetic dipole allowed transition was taken as the reference. The high values obtained for the 4f-4f intensity parameter Omega2 for europium complexes suggest that the dynamic coupling mechanism is quite operative in these compounds.  相似文献   

4.
Eu-doped ZnO nanoneedles with different doping concentrations were prepared via the facile hydrothermal method.The crystal structure,morphology and photoluminescence property of the ZnO nanoneedles were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),X-ray photoelectron spectroscopy(XPS),photoluminescence spectroscopy(PL) and Raman spectroscopy.The results show that the europium ions are incorporated into the crystal lattice of ZnO matrix in trivalent ions.The nanoneedles are 2-3 μm in length and 100 nm in the tip diameter.PL and Raman measurements indicate that higher Eu^3+ doping concentration may destroy the crystallization of the nanoneedles and decrease the ratio of IUV/IDLE,which is mainly due to the more defects in the doped ZnO nanoneedles.And the characteristic red emissions of Eu^3+ ions are found by the PL spectroscopy with the Eu^3+doping concentration increasing,which are attributed to the ^5D0→^7F0,^5D0→^7F1 and ^5D0→^7F2 transitions.  相似文献   

5.
Some europium complexes with pyrazolone derivatives and 1,10-phenanthroline were synthesized and characterized. The europium ion was found to coordinate to O atoms of the pyrazolone derivatives and to N atoms of 1,10-phenanthroline. A strongly ligand-localized UV absorption leads to the europium-centered emissions between 580 and 750 nm which were assigned as the 5D0-->7F0,1,2,3,4 and 5D1-->7F3,4 transitions. A low site symmetry for the Eu3+ ion was confirmed from the observation of 5D0-->7F0 emission and from the splitting of the other bands. In contrast to many Eu complexes that have been investigated a rather weak emission was measured by introduction of a Schiff base to form a ternary complex with the pyrazolone derivative. The long fluorescence lifetimes of these complexes suggest an energy transfer process from ligands to Eu3+ ion through the triplet state of the ligands.  相似文献   

6.
Terbium-exchanged MFI zeolite type materials, i.e., microporous-mesoporous Zeotile-1 with the Si/Al ratio in the range 33-200, Zeogrid with the Si/Al ratio of 75, and nanocrystalline MFI with the Si/Al ratio of 75, were prepared via an ion exchange procedure. All of these zeolites were investigated by means of time-resolved photoluminescence techniques in various hydration states: as-synthesized (hydrated), calcined (heated at 450 degrees C in air), and rehydrated (after a six-month exposure to the atmospheric moisture). The photoluminescence decays and spectra were analyzed by discrete exponential fitting, distribution lifetimes analysis, and area-normalized time-resolved photoluminescence spectra. The results sustained a single average terbium species coordinated to both water molecules and framework oxygens in the hydrated zeolites. The framework contribution increased with the Si/Al ratio in Zeotile-1 and was greatest for the nanocrystalline MFI zeolite. For the calcined Zeotile-1 and Zeogrid, two main terbium species of different environments were found. For the nanocrystalline Tb3+-MFI, a distinct number of species could not be inferred, indicating a more heterogeneous distribution. Rehydration further differentiated among the Tb3+-exchanged zeolites. Photoluminescence line shape and decay of Tb3+-Zeotile-1 were between those of the hydrated and calcined states indicating a slow rehydration rate in contrast with the photoluminescence properties of Tb3+-MFI, which fully recovered the values of the hydrated state. Tb3+-Zeogrid presented an intermediate case: while the PL line shape was fully restored to that measured for the hydrated sample, the decay was still longer than that measured with the hydrated sample. Terbium photoluminescence response related to zeolite texture, Si/Al ratio, and hydration state suggest different sitting and location of terbium in Zeotile-1, Zeogrid, and nanocrystalline MFI materials. In mesoporous Zeotile-1 and Zeogrid, the results sustained two types of terbium sites: one on the internal surface of mesopores, the other inside the pores, while for the nanocrystalline MFI, terbium sites inside the pores predominate.  相似文献   

7.
溶剂热合成纳米球状La2O2S:Eu3+荧光粉   总被引:5,自引:0,他引:5  
Eu3+离子激活的硫氧化物荧光粉是目前国内外广泛使用的CRT红色发光材料[1]. 它具有色纯度高、色彩不失真、亮度-电流饱和度特性好和稳定性高等特性, 已成为CRT不可替代的红色荧光粉. 此外, 掺杂或不掺杂Eu3+的硫氧化镧是还原SO2有害气体为S单质的优良催化剂[2,3]. 近年来兴起的纳米材料是有可能在本世纪得到广泛应用的材料; 掺杂稀土离子的硫氧化物有望应用于各种显示技术及催化剂中. 最近, 吴长峰等[4]在Y2O3∶Eu3+纳米管中观察到发射峰展宽等特性. 因而, 研究Eu3+离子激活的硫氧化镧纳米荧光粉是很有意义的.  相似文献   

8.
Luminescent Ln (Eu3+, Tb3+) doped hydroxyapatite (Eu:HAp, Tb:HAp) phosphors were successfully fabricated via the cetyltrimethylammonium bromide (CTAB)/n-octane/n-butanol/water microemulsion-mediated solvothermal process. The structure, morphology, and optical properties were systematically characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), Fourier transform infrared spectroscopy (FT-IR), and photoluminescence (PL) spectra as well as the kinetic decays, respectively. The XRD results reveal that the obtained Eu:HAp and Tb:HAp show the characteristic peaks of hydroxyapatite in a hexagonal lattice structure. It is observed that the as-prepared luminescent samples exhibit rod-like morphology with well dispersed and non-aggregated size distribution. Upon excitation by UV radiation, the phosphors demonstrate the characteristic 5D 0-7F 1-4 emission lines of Eu3+ and the characteristic 5D4-7F 3-6 emission lines of Tb3+. Moreover, the photoluminescence intensities (PL) of Eu3+ and Tb3+ can be tuned by altering the solvothermal temperature and the doping concentration of Eu3+ and Tb3+.  相似文献   

9.
The autodetachment lifetimes of SF6-* and C6F6-* ions formed by charge transfer in K(np)/SF6, C6F6 collisions are measured as a function of target temperature over the range of approximately 300-600 K with the aid of time-of-flight techniques and a Penning ion trap. At room temperature only formation of long-lived SF6 -* ions with lifetimes tau >or similar to 1 ms is seen. As the temperature is increased the lifetime of these long-lived ions is reduced, some having lifetimes as short as approximately 0.4 ms. The appearance of a short-lived, tau 相似文献   

10.
林美娟  安琪  胡珍  曾惠卷  凌启淡 《应用化学》2014,31(10):1164-1170
合成了正己酸铕、正辛酸铕、月桂酸铕和硬脂酸铕4种不同碳链链长的脂肪酸铕配合物,通过哈克转矩流变仪将铕配合物(质量分数1%)机械掺杂于3种不同透明度的聚乙烯(PE)、聚丙烯(PP)和聚苯乙烯(PS)通用树脂中,制备了系列铕配合物掺杂聚合物光致发光复合材料,考察了配体、配合物、聚合物基体对复合材料的外观、透明性及其荧光性能的影响。 结果表明,4种脂肪酸铕配合物及其掺杂的复合材料在紫外光的激发下均在593、617 nm处发射强的Eu3+离子5D0→7F1、5D0→7F2跃迁的特征荧光;脂肪酸配体的碳链长短对铕配合物及复合材料的发光影响较小;PE、PP复合材料发光颜色与红光铕配合物相同,PS复合材料因基体PS和Eu3+离子的发光共同作用而呈现了玫瑰红的荧光发射。  相似文献   

11.
Yang J  Zhang C  Li C  Yu Y  Lin J 《Inorganic chemistry》2008,47(16):7262-7270
Tb (1- x) BO 3: xEu (3+) ( x = 0-1) microsphere phosphors have been successfully prepared by a simple hydrothermal process directly without further sintering treatment. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), photoluminescence (PL), low-voltage cathodoluminescence (CL), and time-resolved emission spectra as well as lifetimes were used to characterize the samples. The as-obtained phosphor samples present sphere-like agglomerates composed of nanosheets with highly crystallinity in spite of the moderate reaction temperature of 200 degrees C. Under ultraviolet excitation into the 4f (8) --> 4f (7)5d transition of Tb (3+) at 245 nm (or 284 nm) and low-voltage electron beams' excitation, TbBO 3 samples show the characteristic emission of Tb (3+) corresponding to (5)D 4 --> (7)F 6, 5, 4, 3 transitions; whereas TbBO 3:Eu (3+) samples mainly exhibit the characteristic emission of Eu (3+) corresponding to (5)D 0 --> (7)F 0, 1, 2, 3, 4 transitions due to an efficient energy transfer occurs from Tb (3+) to Eu (3+). The increase of Eu (3+) concentration leads to the increase of the energy-transfer efficiency from Tb (3+) to Eu (3+) but also enhances the probability of the interaction between neighboring Eu (3+), which results in the concentration quenching. The PL color of TbBO 3: xEu (3+) phosphors can be easily tuned from green, yellow, orange, to red-orange by changing the doping concentration ( x) of Eu (3+), making the materials have potential applications in fluorescent lamps for advertizing signs and other color display fields.  相似文献   

12.
合成了铕-铽-钆-六氟乙酰丙酮(HFA)三元配合物Eu0.4Tb0.4Gd0.2(HFA)3(TPPO)2(TPPO: 三苯基氧化磷), 其组成和结构经元素分析和红外吸收光谱确认; 研究了三元配合物的发光性能, 以及铽、钆离子对铕离子发光性能的影响. 结果表明, 配合物中存在着声子支助的Tb3+→Eu3+的能量转移, 增强了Eu3+离子的室温特征荧光发射, 且样品的发光颜色随温度的改变而变化, 具有温敏特性.  相似文献   

13.
Luminescent and mesoporous Eu(3+)/Tb(3+) doped calcium silicate microspheres (LMCS) were synthesized by using mesoporous silica spheres as the templates. The LMCS and drug-loaded samples were characterized by means of X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), N(2) adsorption/desorption, and photoluminescence (PL) spectra. The results reveal that the LMCS have uniform spherical morphology with a diameter around 400 nm and the mesopore size of 6 nm. The prepared samples exhibit little cytotoxicity at concentrations below 5 mg mL(-1) via MTT assay. In addition, drug storage/release properties of the LMCS were demonstrated for ibuprofen (IBU). The obtained LMCS can be used to encapsulate drugs and release them. Under excitation by UV light, the IBU-loaded samples still show the characteristic (5)D(0)-(7)F(1-3) emission lines of Eu(3+) and the characteristic (5)D(4)-(7)F(3-6) emission lines of Tb(3+). The PL intensity of Eu(3+) in the drug carrier system increases with the cumulative released amount of IBU, making the drug release able to be tracked or monitored by the change of luminescence of Eu(3+). The LMCS reported here with mesoporous structure, good biocompatibility and luminescent property can be a promising drug delivery carrier.  相似文献   

14.
A new family of mixed-lanthanide cyano-bridged coordination polymers Ln(0.5)Ln'(0.5)(H(2)O)(5)[W(CN)(8)] (where Ln/Ln' = Eu(3+)/Tb(3+), Eu(3+)/Gd(3+), and Tb(3+)/Sm(3+)) containing two lanthanide and one transition metal ions were obtained and characterized by X-ray diffraction, photoluminescence spectroscopy, magnetic analyses, and theoretical computation. These compounds are isotypical and crystallize in the tetragonal system P4/nmm forming two-dimensional grid-like networks. They present a magnetic ordering at low temperature and display the red Eu(3+) ((5)D(0) → (7)F(0-4)) and green Tb(3+) ((5)D(4) → (7)F(6-2)) characteristic photoluminescence. The Tb(0.5)Eu(0.5)(H(2)O)(5)[W(CN)(8)] compound presents therefore green and red emission and shows Tb(3+)-to-Eu(3+) energy transfer.  相似文献   

15.
Europium-doped rare-earth oxysulphides (red phosphors) are often used as reference luminophore in pyrene-based pressure sensor coatings for aerodynamic applications. Different red phosphor samples were characterized for their particle size, chemical composition, photoluminescent properties and temperature sensitivity. The red phosphor samples were characterized using energy-dispersive X-ray spectroscopy (EDX) for elemental analysis and scanning electron microscopy (SEM) for morphology and particle size measurement. The particle size was in the range of 1.5-5.7 μm with morphology of hexagonal or spherical shape. It was found that phosphor with higher europium content exhibited higher luminescent emission intensity. The phosphor coatings were prepared by spraying a dispersion of the material in silicone resin. Smooth coatings were obtained by using phosphor samples with smaller particle size. Upon 334 nm excitation, the coatings showed characteristic luminescence 5D0→7FJ (J=0, 1, 2, 3, 4) of the Eu3+ ions. The electronic transition located at 626 nm (5D0→7F2) of Eu3+ ions was stronger than the magnetic dipole transition located at 595 nm (5D0→7F1). Luminescence decay curves obeyed double exponential behaviour. The phosphor samples showed temperature sensitivity of -0.012 to -0.168%/°C in the temperature range of 25-50 °C.  相似文献   

16.
The formation and the photophysical properties of the europium-thenoyltrifluoroacetone (TTA) trioctylphosphine oxide (TOPO)-Triton X-100 chelate were investigated. When the medium is buffered with acetate, there is a strong competition between acetate and TTA for coordination with europium ions. When TOPO is added into the solution, the Eu-TTA-TOPO ternary chelate forms more easily, probably because the coligand acts as a synergic agent and would favour the formation of the enol form of TTA. Although the stoichiometric composition of the chelate is expected to be Eu(TTA)3(TOPO)2, the Eu-TTA and the Eu-TOPO mole ratios may be within 2-3 and 1-2, respectively, depending on the composition of the solution. However, the fluorescent properties of the chelate seem to be mainly dominated by its actual concentration into the solution rather than by its composition. Time resolution of europium emission spectra in the microsecond range has shown that energy transfer occurs from the TTA ligand to the 5D1 level of europium. Then, the emitting 5D0 level is populated through non-radiative deactivation of 5D1. The observed lifetimes of the 5D1 and 5D0 states are 1.25 and 860 micros, respectively. The overall fluorescence quantum yield of the chelate, measured by the photothermal method, is found to be 0.22. On the basis of the time-resolved photothermal experiments, the fluorescence quantum yield of the 5D0 state is expected to be > 0.8 and the energy transfer efficiency < 0.28.  相似文献   

17.
A new Eu(III) complex, EuL3(phen), was synthesized, where L is the abbreviation of de-protonated 1-(7-(tert-butyl)-9-ethyl-9H-carbazol-2-yl)-4,4,4-trifluorobutane-1,3-dione (HL), phen is the abbreviation of 1,10-phenanthroline. The Eu(III) complex was characterized by element analysis, IR, 1H NMR, UV-visible absorption spectroscopy, thermogravimetric anal-ysis (TGA), and photoluminescence measurements (PL). TGA shows that thermal stability of the complex is up to 325 oC. PL measurement indicates that the Eu(III) complex exhibits intense red-emission and extends their excitation bands to visible region. LEDs device was successfully fabricated by precoating complex EuL3(phen) onto 460 nm blue-emitting InGaN chip. The emission of device shows that the complex can act as red phosphor in combination with 460 nm blue-emitting chips. This europium complex based on 1-(7-(tert-butyl)-9-ethyl-9H-carbazol-2-yl)-4,4,4-trifluorobutane-1,3-dione is a kind of interesting red-emitting material excited by blue light, which could avoid the damage of excitation by UV light.  相似文献   

18.
Luminescence and excitation of luminescence vibronic spectra of europium nitrates Eu(NO3)3 x 4SOR2 containing sulphoxide derivatives were obtained and analysed. Some factors influencing the intensity distribution in vibronic sidebands are discussed. Significant variation of the intensity distribution in antiStokes sidebands of Eu3+ electronic transitions in series of nitrates results from the difference in effective charges on coordinated oxygen atoms of ligands. Another important detail of the vibronic spectra is a redistribution of intensity in the region of 5D0, 5D1-->7F2 transitions of luminescence spectra originated in overlap of different vibronic transitions. Mixing between the 7F2 electronic state of Eu3+ and vibronic satellites of 7F0 electronic state was studied both under conditions of resonance and in case of significant detuning.  相似文献   

19.
Cm(III) interaction with calcite was investigated by time-resolved laser fluorescence spectroscopy (TRLFS) in the trace concentration range. Two different Cm(III)/calcite sorption species were found. The first Cm(III) sorption species consists of a curium ion bonded onto the calcite surface. The second Cm(III) sorption species has lost its complete hydration sphere and is incorporated into the calcite bulk structure. The Cm(III)/calcite complexes are characterized by their emission spectra (peak maxima at 607.5 and 618.0 nm) and their fluorescence emission lifetimes (314+/-6 and 1302+/-75 micros).  相似文献   

20.
Terbium-exchanged BEA zeolites were hydrophobized with phenyl-, vinyl-, and hexadecyltrimethoxysilanes by means of postsynthesis grafting. These materials were investigated using XRD, FT-IR, TGA, physical adsorption, and photoluminescence. Different methods for the analysis of the non-exponential decay of terbium photoluminescence in BEA zeolites were used ranging from discrete exponential to more complex approaches based on maximum entropy and global analysis. Two groups of decay times varying between 480 and 580 micros and 1-1.3 ms were assigned to the lifetimes of terbium exposed to water (unprotected) and protected by the organic groups, respectively. Our results showed that the preservation of terbium PL properties against detrimental effects of moisture adsorption could be ordered in the following sequence: hexadecyl > phenyl approximately vinyl. The photoluminescence results were in good agreement with the FT-IR, TGA, and physical adsorption data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号