首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PdCl2(PPh3)2 reacted with NaOAr (Ar = Ph, p-tolyl) at 0 °C to afford PdCl(Ph)(PPh3)2, instead of PdCl(OAr)(PPh3)2, in 12-16% isolated yields based on Pd. The structure was confirmed by NMR and X-ray crystallography. GC-MS analysis of the reaction solution revealed that OPPh2(OAr), OPPh(OAr)2, and OP(OAr)3 are formed, while NMR studies indicated that PdCl(Ph)(PPh3)2 is produced when PdCl(OAr)(PPh3)2 decomposes. The reaction of PdCl2(PPh3)2 with Bu3Sn(OC6H4-p-OMe) also gave PdCl(Ph)(PPh3)2 in 8% isolated yield. These results suggest that PdCl(OAr)(PPh3)2 is highly labile and the aryloxy ligand exchanges with the phenyl groups in triphenylphosphine even under very mild conditions.  相似文献   

2.
A facile, mild, efficient, and copper-free method has been developed for the synthesis of 2-substituted indoles via domino Sonogashira coupling/cyclization reaction catalyzed by ZnCl2 and palladium on carbon with simultaneous formations of C–C and C–N bonds.  相似文献   

3.
Summary Single crystal X-ray data of the hydrothermally grown new phase Li2Cu3(SeO3)2(SeO4)2 were measured with a four-circle diffractometer up to sin /=0.81 Å–1 [I2/a,Z=4,V=1175.5 Å3,a=16.293(6),b=5.007(2),c=14.448(6) Å, = 94.21(1)°]. The structure was determined by direct and Fourier methods and refined toR=0.034,R w =0.027 for 2 086 independent reflections.Cu(1)[4+1]O5 forms a tetragonal pyramid, Cu(2)[4 + 2]O6 is a strongly elongated octahedron. The Li atom is surrounded by four O atoms forming a distorted tetrahedron. Se(IV)O3 and Se(VI)O4 groups are in accordance to literature, mean Se-O bond lengths are 1.714 and 1.644 Å.
Die Kristallstruktur von Li2Cu3(SeO3)2(SeO4)2
Zusammenfassung Einkristall-Röntgendaten der hydrothermal gezüchteten neuen Phase Li2Cu3(SeO3)2(SeO4)2 wurden mit einem Vierkreisdiffraktometer im Bereich bis zu sin /=0.81 Å–1 gemessen [I2/a,Z=4,V=1175.5 Å3,a=16.293(6),b=5.007(2),c=14.448(6) Å, =94.21(1)°]. Die Kristallstruktur wurde mittels direkter und Fourier-Methoden bestimmt und für 2 086 unabhängige Reflexe zuR=0.034,R w =0.027 verfeinert.Cu(1)[4+1]O5 bildet eine tetragonale Pyramide, Cu(2)[4+2]O6 ist ein stark verlängertes Oktaeder. Das Li-Atom ist von vier O-Atomen in Gestalt eines verzerrten Tetraeders umgeben. Die Se(IV)O3-und Se(VI)O4-Gruppen entsprechen der Literatur, die mittleren Se-O-Abstände betragen 1.714 und 1.644 Å.
  相似文献   

4.
Crystals of PbCu3(OH)(NO3)(SeO3)3·1/2H2O [a=7.761(3)Å,b=9.478(4)Å,c=9.514(4)Å, =66.94(2)°, =69.83(2)°, =81.83(2)°, space group P ,Z=2] and Pb2Cu3O2(NO3)2(SeO3)2 [a=5.884(2)Å,b=12.186(3)Å,c=19.371(4)Å, space group Cmc21,Z=4] were synthesized under hydrothermal conditions. Their crystal structures were refined with three-dimensional X-ray data toR w=0.033 resp. 0.055. In PbCu3(OH)(NO3)(SeO3)3·1/2H2O the Cu atoms are [4+1] and [4+2] coordinated and via SeO3 groups a three-dimensional atomic arrangement is built up. In Pb2Cu3O2(NO3)2(SeO3)2 there are sheets, which are connected only via Pb-O bonds ranging from 2.98 Å to 3.16 Å.
  相似文献   

5.
We present an efficient way to search a host for ultraviolet (UV) phosphor from UV nonlinear optical (NLO) materials. With the guidance, Na3La2(BO3)3 (NLBO), as a promising NLO material with a broad transparency range and high damage threshold, was adopted as a host material for the first time. The lanthanide ions (Tb3+ and Eu3+)-doped NLBO phosphors have been synthesized by solid-state reaction. Luminescent properties of the Ln-doped (Ln=Tb3+, Eu3+) sodium lanthanum borate were investigated under UV ray excitation. The emission spectrum was employed to probe the local environments of Eu3+ ions in NLBO crystal. For red phosphor, NLBO:Eu, the measured dominating emission peak was at 613 nm, which is attributed to 5D0-7F2 transition of Eu3+. The luminescence indicates that the local symmetry of Eu3+ in NLBO crystal lattice has no inversion center. Optimum Eu3+ concentration of NLBO:Eu3+ under UV excitation with 395 nm wavelength is about 30 mol%. The green phosphor, NLBO:Tb, showed bright green emission at 543 with 252 nm excited light. The measured concentration quenching curve demonstrated that the maximum concentration of Tb3+ in NLBO was about 20%. The luminescence mechanism of Ln-doped NLBO (Tb3+ and Eu3+) was analyzed. The relative high quenching concentration was also discussed.  相似文献   

6.
用液相反应-前驱物烧结法制备了Cr2(WO4)3和Cr2(MoO4)3粉体。298~1 073 K的原位粉末X射线衍射数据表明Cr2(WO4)3和Cr2(MoO4)3的晶胞体积随温度的升高而增大, 本征线热膨胀系数分别为(1.274±0.003)×10-6 K-1和(1.612±0.003)×10-6 K-1。用热膨胀仪研究了Cr2(WO4)3和Cr2(MoO4)3在静态空气中298~1 073 K范围内热膨胀行为,即开始表现为正热膨胀,随后在相转变点达到最大值,最后表现为负热膨胀,其负热膨胀系数分别为(-7.033±0.014)×10-6 K-1和(-9.282±0.019)×10-6 K-1。  相似文献   

7.
新法合成乙炔型维A酸   总被引:1,自引:0,他引:1  
合成了一种新型乙炔型维A酸类化合物, 拓展了该类碘代芳香羧酸与苯乙炔直接偶联的无铜 Sonogashira 反应. 以对溴苯甲酸为底物, 研究了无铜条件下PdCl2(PPh3)2的催化性能, 在10倍量的哌啶中, 对溴苯甲酸、苯乙炔和摩尔分数为4%的PdCl2(PPh3)2在85 ℃下反应20 min得到99%的偶联分离产率, 总收率72%. 本方法也适用于相关乙炔型RAs 分子的合成, 具有操作简单、产率高等优点.  相似文献   

8.
DMAP was found to accelerate significantly the rate of Pd(OAc)2 catalyzed Barbier type allylation of carbonyl compounds by allylbromide using SnCl2·2H2O as reducing agent. Both aldehyde as well as ketones produced excellent yields within a short reaction time in the presence of 3 mol % of Pd(OAc)2 and 12 mol % of DMAP at room temperature. Aldehydes could be allylated within 5–10 min whereas, in case of ketones, the reaction completes in 45–120 min.  相似文献   

9.
La2(CO3)3 nanowires were prepared in the nonionic surfactant microemulsion(Triton X-100/cyclohexane/water)system. Transmission electron microscopy (TEM) and selected area electronic diffraction (SAED) were used to characterize the shape and size of the products. The results showed that the pH value and concentration of mother solution, temperature and aging time all could affect the morphology and size of the La2(CO3)3 nanowires. The lengths of the nanowires were more than 10 μm and the diameters were in the range of 30~200 nm.  相似文献   

10.
Various known and new 3,4-dihydropyrimidin-2(1H)-ones and 1,4-dihydropyridines are prepared efficiently via Biginelli and Hantzsch reactions using ammonium carbonate in water. Competition between Biginelli and Hantzsch reactions is observed with pyridine carbaldehydes. Using this methodology, Hantzsch esters are synthesized in higher yields and purities than with other procedures without the use of a catalyst or an organic solvent.  相似文献   

11.
The crystal structure of the new phase Cu7(OH)6(TeO3)2(SO4)2 [a=7.389 (1),b=7.638 (1),c=7.662 (2) Å, =75.17 (1), =75.90 (1), =84.19 (1)°;Z=1] was determined by direct methods andFourier summations from X-ray intensities, and was refined in space group P -C i 1 toR=0.039. As usual, the Cu(II) atoms are coordinated to four O atoms forming approximately a square with average Cu-O=1.96 (3) Å; one or two more distant O neighbours complete the coordination. The shape of the TeO3 group is a rather clear-cut trigonal pyramid. A disorder was found for the SO4 tetrahedra. The compound was synthesized under hydrothermal conditions [500 (10) K, saturation vapour pressure].
Herrn Prof. Dr.K. Komarek zum 60. Geburtstag gewidmet.  相似文献   

12.
Two oxoborates, (Pb3O)2(BO3)2MO4 (M=Cr, Mo), have been prepared by solid-state reactions below 700 °C. Single-crystal XRD analyses showed that the Cr compound crystallizes in the orthorhombic group Pnma with a=6.4160(13) Å, b=11.635(2) Å, c=18.164(4) Å, Z=4 and the Mo analog in the group Cmcm with a=18.446(4) Å, b=6.3557(13) Å, c=11.657(2) Å, Z=4. Both compounds are characterized by one-dimensional chains formed by corner-sharing OPb4 tetrahedra. BO3 and CrO4 (MoO4) groups are located around the chains to hold them together via Pb–O bonds. The IR spectra further confirmed the presence of BO3 groups in both structures and UV–vis diffuse reflectance spectra showed band gaps of about 1.8 and 2.9 eV for the Cr and Mo compounds, respectively. Band structure calculations indicated that (Pb3O)2(BO3)2MoO4 is a direct semiconductor with the calculated energy gap of about 2.4 eV.  相似文献   

13.
研究了温度、时间、浓度等对A3钢片上Ni-P-Zn3(PO4)2、Ni-P-ZnSnO3和Ni-P-ZiSiO3纳米复合合化学镀层外貌的影响,用扫描电子显微镜(SEM)观察外貌、称重法测定厚度;通过10%NaCl溶液、1%H2S气体加速腐蚀试验,10%CuSO4溶液点滴试验等多种手段测定其耐腐蚀性能,用X-射线光电子谱(XPS)及俄歇电子能谱(SES)测定其价态组成,结果表明:在最佳施镀条件下,可得光亮、致密、耐腐蚀性强于A3钢、磷化膜及Ni-P镀层的纳米复合化学镀层,镀层的原子百分组成约为(%):Ni-P-Zn3(PO4)2:Ni70.00,P12.47,Zn3(PO4)213.93,C3.6;Ni-P-ZnSnO3;Ni77.56,P10.00,ZnSnO39.84,C2.6;Ni-P-NiSiO3,Ni83.00,P10.96,ZnSi5.15,C0.89.  相似文献   

14.
15.
The ternary BaO-TiO2-B2O3 glasses containing a large amount of TiO2 (20-40 mol%) are prepared, and their optical basicities (Λ), the formation, structural features and second-order optical nonlinearities of BaTi(BO3)2 and Ba3Ti3O6(BO3)2 crystals are examined to develop new nonlinear optical materials. It is found that the glasses with high TiO2 contents of 30-40 mol% show large optical basicities of Λ=0.81-0.87, suggesting the high polarizabity of TiOn polyhedra (n=4-6) in the glasses. BaTi(BO3)2 and Ba3Ti3O6(BO3)2 crystals are found to be formed as main crystalline phases in the glasses. It is found that BaTi(BO3)2 crystals tend to orient at the surface of crystallized glasses. The new XRD pattern for the Ba3Ti3O6(BO3)2 phase is proposed through Rietvelt analysis. The second harmonic intensities of crystallized glasses were found to be 0.8 times as large as α-quartz powders, i.e., I2ω(sample)/I2ω(α-quartz)=0.8, for the sample with BaTi(BO3)2 crystals and to be I2ω(sample)/I2ω(α-quartz)=68 for the sample with Ba3Ti3O6(BO3)2 crystals. The Raman scattering spectra for these two crystalline phases are measured for the first time and their structural features are discussed.  相似文献   

16.
The rate constants of the hydrogen abstraction reactions of CF3CHFCF3 + H (R1) and CF3CF2CHF2 + H (R2) have been calculated by means of the dual-level direct dynamics method. Optimized geometries and frequencies of stationary points and extra points along the minimum-energy path (MEP) are obtained at the MPW1K/6-311+G(d,p) level, and the classical energetic information is further corrected with the interpolated single-point energy (ISPE) approach by the G3(MP2) level of theory. Using the canonical variational transition state theory (CVT) with small-curvature tunneling corrections (SCT), the rate constants are evaluated over a wide temperature range of 200-2000 K. The calculated CVT/SCT rate constants are in good agreement with available experimental values. It is found that the variational effect is very small and almost negligible over the whole temperature region. However, the small-curvature tunneling correction plays an important role in the lower temperature range. Furthermore, the heats of formation of species CF3CF2CHF2 (SC1 or SC2) and CF3CF2CF2 are studied using isodesmic reactions to further elucidate the thermodynamic properties.  相似文献   

17.
The three copper(II)-arsenates were synthesized under hydrothermal conditions; their crystal structures were determined by single-crystal X-ray diffraction methods:Cu3(AsO4)2-III:a=5.046(2) Å,b=5.417(2) Å,c=6.354(2) Å, =70.61(2)°, =86.52(2)°, =68.43(2)°,Z=1, space group ,R=0.035 for 1674 reflections with sin / 0.90 Å–1.Na4Cu(AsO4)2:a=4.882(2) Å,b=5.870(2) Å,c=6.958(3) Å, =98.51(2)°, =90.76(2)°, =105.97(2)°,Z=1, space group ,R=0.028 for 2157 reflections with sin / 0.90 Å–1.KCu4(AsO4)3:a=12.234(5) Å,b=12.438(5) Å,c=7.307(3) Å, =118.17(2)°,Z=4, space group C2/c,R=0.029 for 1896 reflections with sin / 0.80 Å–1.Within these three compounds the Cu atoms are square planar [4], tetragonal pyramidal [4+1], and tetragonal bipyramidal [4+2] coordinated by O atoms; an exception is the Cu(2)[4+1] atom in Cu3(AsO4)2-III: the coordination polyhedron is a representative for the transition from a tetragonal pyramid towards a trigonal bipyramid. In KCu4(AsO4)3 the Cu(1)[4]O4 square and the As(1)O4 tetrahedron share a common O—O edge of 2.428(5) Å, resulting in distortions of both the CuO4 square and the AsO4 tetrahedron. The two Na atoms in Na4Cu(AsO4)2 are [6] coordinated, the K atom in KCu4(AsO4)3 is [8] coordinated by O atoms.Die drei Kupfer(II)-Arsenate wurden unter Hydrothermalbedingungen gezüchtet und ihre Kristallstrukturen mittels Einkristall-Röntgenbeugungsmethoden ermittelt:Cu3(AsO4)2-III:a = 5.046(2) Å,b = 5.417(2) Å,c = 6.354(2) Å, = 70.61 (2)°, = 86.52(2)°, = 68.43(2)°,Z = 1, Raumgruppe ,R = 0.035 für 1674 Reflexe mit sin / 0.90 Å–1.Na4Cu(AsO4)2:a = 4.882(2) Å,b = 5.870(2) Å,c = 6.958(3) Å, = 98.51(2)°, = 90.76(2)°, = 105.97(2)°,Z = 1, Raumgruppe ,R = 0.028 für 2157 Reflexe mit sin / 0.90 Å–1.KCu4(AsO4)3:a = 12.234(5) Å,b = 12.438(5) Å,c = 7.307(3) Å, = 118.17(2)°,Z = 4, Raumgruppe C2/c,R = 0.029 für 1896 Reflexe mit sin / 0.80 Å–1.Die Cu-Atome in diesen drei Verbindungen sind durch O-Atome quadratisch planar [4], tetragonal pyramidal [4 + 1] und tetragonal dipyramidal [4 + 2]-koordiniert; eine Ausnahme ist das Cu(2)[4 + 1]-Atom in Cu3(AsO4)2-III: Das Koordinationspolyeder stellt einen Vertreter des Übergangs von einer tetragonalen Pyramide zu einer trigonalen Dipyramide dar. In KCu4(AsO4)3 haben das Cu(1)[4]O4-Quadrat und das As(1)O4-Tetraeder eine gemeinsame O—O-Kante von 2.428(5) Å, was eine Verzerrung der beiden Koordinationsfiguren CuO4-Quadrat und AsO4-Tetraeder bedingt. Die zwei Na-Atome in Na4Cu(AsO4)3 sind durch O-Atome [6]-koordiniert, das K-Atom in KCu4(AsO4)3 ist [8]-koordiniert.
Zur Kristallchemie dreier Kupfer (II)-Arsenate: Cu3(AsO4)2-III, Na4Cu(AsO4)2 und KCu4(AsO4)3
  相似文献   

18.
A new complete solid solution of NASICON-type compounds between LiZr2(PO4)3 and La1/3Zr2(PO4)3 was evidenced with the general formula Li1−xLax/3Zr2(PO4)3 (0?x?1). These phases were synthesized by a complex polymerizable method and structurally characterized from Rietveld treatment of their X-ray and neutron powder diffraction data. This solid solution results from the substitution mechanism Li+→1/3La3++2/3□ leading to an increase of the vacancies number correlated to an increase of the La content. According to this substitution mechanism, the general formula can then be written Li1−xLax/32x/3Zr2(PO4)3 (0?x?1) in order to underline the correlation between the La content and the vacancies rate. For all the compounds, the structure is clearly related to that of the NASICON family with three crystallographic domains evidenced. For 0?x?0.5, all the members adopt at high temperature the typical NASICON-type structure (s.g. Rc), while at lower temperature, their structure distorts to a triclinic form (s.g. C 1¯), as observed for LiZr2(PO4)3 prepared above 1100 °C. Moreover, in this domain, the reversible transition is clearly soft and the transition temperature strongly depends of the x value. For 0.6?x?0.9, the compounds crystallize in a rhombohedral cell (s.g. R3¯), while for x=1, the phase La1/3Zr2(PO4)3 is obtained (s.g. P3¯, Z=6, a=8.7378(2) Å, c=23.2156(7) Å).This paper is devoted to the structure analysis of the series Li1−xLax/3Zr2(PO4)3 (0?x?1), from X-ray and neutron powder thermo diffraction and transmission electron microscopy (TEM) studies.  相似文献   

19.
Subsolidus phase relationships in the In2O3-WO3 system at 800-1400°C were investigated using X-ray diffraction. Two binary-oxide phases—In6WO12 and In2(WO4)3—were found to be stable over the range 800-1200°C. Heating the binary-oxide phases above 1200°C resulted in the preferential volatilization of WO3. Rietveld refinement was performed on three structures using X-ray diffraction data from nominally phase-pure In6WO12 at room temperature and from nominally phase-pure In2(WO4)3 at 225°C and 310°C. The indium-rich phase, In6WO12, is rhombohedral, space group (rhombohedral), with Z=1, a=6.22390(4) Å, α=99.0338(2)° [hexagonal axes: aH=9.48298(6) Å, c=8.94276(6) Å, aH/c=0.9430(9)]. In6WO12 can be viewed as an anion-deficient fluorite structure in which 1/7 of the fluorite anion sites are vacant. Indium tungstate, In2(WO4)3, undergoes a monoclinic-orthorhombic transition around 250°C. The high-temperature polymorph is orthorhombic, space group Pnca, with a=9.7126(5) Å, b=13.3824(7) Å, c=9.6141(5) Å, and Z=4. The low-temperature polymorph is monoclinic, space group P21/a, with a=16.406(2) Å, b=9.9663(1) Å, c=19.099(2) Å, β=125.411(2)°, and Z=8. The structures of the two In2(WO4)3 polymorphs are similar, consisting of a network of corner sharing InO6 octahedra and WO4 tetrahedra.  相似文献   

20.
The high pressure behavior of aluminum tungstate [Al2(WO4)3] has been investigated up to ∼18 GPa with the help of Raman scattering studies. Our results confirm the recent observations of two reversible phase transitions below 3 GPa. In addition, we find that this compound undergoes two more phase transitions at ∼5.3 and ∼6 GPa before transforming irreversibly to an amorphous phase at ∼14 GPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号