首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
3 is reported. Using an external cavity diode laser, tunable from 795 to 825 nm, and a cw diode-pumped Nd:YAG ring laser at 1064 nm, we produced narrowband mid-ir laser light between 3.16 and 3.67 μm. This broad tuning range of 440 cm-1 can be critically phase-matched by changing the external crystal angle within a range of only 0.4°. Even for a fixed crystal angle broadband phase-matching over 230 cm-1 was achieved. No realignment was required when tuning the laser over the whole wavelength range, which enabled the use of a compact 36-m multipass cell as gas chamber. The conversion efficiency could be improved by almost a factor of 3 by applying noncollinear instead of collinear phase-matching, resulting in 30 nW of idler power with good beam quality. Spectra of methane were recorded in laboratory air, which demonstrate the rapid and continuous broad tunability at high sensitivity, enabling sub-ppm detection. Finally, wavelength modulation spectroscopy at high resolution was applied as a promising tool for further inproving the performance of this laser spectrometer. Received: 16 March 1998/Revised version: 1 July 1998  相似文献   

2.
Received: 29 December 1997/Revised version: 6 February 1998  相似文献   

3.
4.
Ultra-broadband optical parametric chirped-pulse amplification is analyzed based the compensation of phase-mismatch, which is achieved by matching of both group-velocity and pulse-front between signal and idler by the combination of the noncollinear-phase-match and pulse-front-tilt. The results show exactly matching of both group-velocity and pulse-front is the important criterion for constructing an UBOPCPA. Its general model is developed, in which the group velocities, noncollinear angles, spatial walk-off angles, linear angular spectral dispersion coefficients and pulse-front tilted angles are suitably linked to each other. Finally, specific numerical calculations and simulations are presented for β-barium borate OPCPA with type-I noncollinear angularly dispersed geometry.  相似文献   

5.
Measurements of intensity and frequency noise of an injection-locked 5-W Nd:YAG laser are presented and compared with the predictions of models. We show that the output of the injection-locked laser has very low levels of noise, and that the measurements support the predictions of the models. Thus these models can confidently be used to predict the performance of high-power, injection-locked lasers being developed for gravity wave detection. Received: 31 January 2000 / Revised version: 18 March 2000 / Published online: 16 June 2000  相似文献   

6.
-1 ), approaching the limit imposed by the Fourier transform of the pulse duration. Received: 31 August 1998  相似文献   

7.
Optical parametric oscillator (OPO) and amplifier (OPA) devices are useful for spectroscopic sensing of chemical processes in laboratory, industrial, and environmental settings. This is particularly true of nanosecond-pulsed, continuously tunable OPO/OPA systems, for which we survey a variety of instrumental strategies, together with actual spectroscopic measurements. The relative merits of OPO wavelength control by intracavity gratings and by injection seeding are considered. A major innovation comprises an OPO with a ring cavity based on periodically poled lithium niobate (PPLN) and injection-seeded by a single-mode tunable diode laser (TDL). Active cavity control by an ‘intensity dip’ method yields an optical bandwidth ≤0.005 cm-1 (150 MHz), which compares favourably with the performance of advanced grating-tuned OPO/OPA systems. A novel adaptation of this TDL-seeded PPLN OPO employs a compact, inexpensive multimode pump laser, with which it is still possible to obtain continuously tunable single-mode signal output. Cavity ringdown (CRD) spectroscopy also figures prominently, with infrared (IR) CRD spectra from both grating-scanned and TDL-seeded OPOs reported. Finally, a tunable ultraviolet (UV) source, combining a TDL-seeded passive-cavity OPO and a sum-frequency generation stage, is developed for measurements of time-resolved IR-UV double resonance spectra of acetylene and UV laser-induced fluorescence spectra of nitric oxide. Received: 28 March 2000 / Published online: 13 September 2000  相似文献   

8.
A 2.2-W continuous-wave, continuously tunable, single-frequency OPO has been developed in the 3.0–3.8 μm wavelength range for the detection of molecular trace gasses. The oscillation threshold, output power and stability of the single resonant OPO were improved by optimizing pump beam waist and OPO cavity length. Both air-spaced and solid etalons were tested to frequency stabilize and tune the OPO, from which the solid etalon gave a better performance. Temperature oscillations in the PPLN crystal caused oscillations in the idler wavelength of less than 200 MHz over 300 s; the short-term stability was less than 3 MHz over 1 s. The high laser power, in combination with photoacoustic spectroscopy, achieved a detection limit of 10 parts-per-trillion for ethane in nitrogen. Received: 9 April 2002 / Revised version: 14 June 2002 / Published online: 2 September 2002 RID="*" ID="*"Corresponding author. Fax:+31-24/3653311, E-Mail: maartenh@sci.kun.nl  相似文献   

9.
We report on an optical parametric amplifier (OPA) based on two potassium titanyl phosphate (KTP) crystals in a walk-off compensating geometry. An Nd:YLF regenerative amplifier at a 1-kHz repetition rate serves as the pump source. The seed beam is delivered by a synchronously pumped frequency-stabilized optical parametric oscillator (OPO) based on periodically poled lithium niobate (PPLN). At pump intensities of about 7 GW/cm2 large amplification factors of more than 104 were achieved, resulting in pulse energies of more than 450 μJ and 350 μJ for the signal and idler pulses, respectively, at a 1-kHz repetition rate. In the saturation regime the time–bandwidth product increases from two to three times the Fourier limit, with a pulse duration of 105 ps and a bandwidth of 12.7 GHz at the highest intensities employed. Received: 2 November 2001 / Published online: 14 March 2002  相似文献   

10.
-1 in a single scan. The potential of the OPO system for linear and nonlinear-optical spectroscopy is demonstrated by recording high-resolution photoacoustic absorption and coherent anti-Stokes Raman spectra of methane, as a gas and in a pulsed supersonic free jet. This narrowband tunable infrared source is shown to scan reliably with an optical bandwidth as small as 0.007 cm-1 (210 MHz) full width half maximum (fwhm), close to the fourier-transform limit. Received: 5 February 1998/Revised version: 6 March 1998  相似文献   

11.
12.
We carried out theoretical investigation about velocity-selective atomic excitation on long-lived (metastable) levels of an atomic vapour in a thin cell by a monochromatic laser beam, running in the normal direction. The regime of coherent Rabi oscillations is considered on the light-induced transition from a sublevel of the ground quantum term to a metastable atomic level. On the basis of density matrix equations for the two-level system, we analysed the atomic population density of the metastable level, when the sample is irradiated by resonant monochromatic laser beam with an annular cross-section versus atomic velocities and versus the detuning, the amplitude, and the geometry of the laser beam. It is shown that, in the centre of the annular region, it can be obtained a population distribution on the metastable level as a function of the laser detuning, characterized by a sharp narrow resonance profile, whose width is reduced with respect to the thermal Doppler width roughly by the ratio between the diameter of the irradiated region and the inner thickness of the cell. We suggest high-sensitive schemes, in order to detect these sub-Doppler resonances, by probing the population of the metastable state with a second laser beam, resonant with a transition leaving from the metastable level. The case of 1S0 → 3P1 spin-forbidden transition of Ca is discussed in more detail  相似文献   

13.
I /kP=0.33and0.50. It is found that the ratio of pump depletion to maximal depletion as a function of the ratio of pump power to threshold power agrees with the plane-wave prediction to within 5%, for a wide range of focusing conditions. The observed trends are explained as resulting from intensity- and phase-dependent mechanisms. Received: 19 January 1998/Revised version: 13 March 1998  相似文献   

14.
Single-frequency diode lasers have been frequency stabilized to 1.5 kHz Allan deviation over 0.05-50 s integration times, with laser frequency drift reduced to less than 1.4 kHz/min, using the frequency reference provided by an ultranarrow inhomogeneously broadened Er3+:4I15/24I13/2 optical absorption transition at a vacuum wavelength of 1530.40 nm in a low-strain LiYF4 crystal. The 130 MHz full-width at half-maximum (FWHM) inhomogeneous line width of this reference transition is the narrowest reported for a solid at 1.5 μm. Strain-induced inhomogeneous broadening was reduced by using the single isotope 7Li and by the very similar radii of Er3+ and the Y3+ ions for which it substitutes. To show the practicability of cryogen-free cooling, this laser stability was obtained with the reference crystal at 5 K; moreover, this performance did not require vibrational isolation of either the laser or crystal frequency reference. Stabilization is feasible up to T=25 K where the Er3+ absorption thermally broadens to ∼500 MHz. This stabilized laser system provides a tool for interferometry, high-resolution spectroscopy, real-time optical signal processing based on spatial spectral holography and accumulated photon echoes, secondary frequency standards, and other applications such as quantum information science requiring narrow-band light sources or coherent detection.  相似文献   

15.
We demonstrate the generation of ultraviolet 33-fs pulses with a shot-to-shot energy fluctuation of less than 3% using sum frequency mixing of visible pulses of a noncollinear optical parametric amplifier with sub-40-fs pulses of a 1-kHz Ti:sapphire-amplified system. The pulses are transform-limited (ΔνΔτ=0.36) and tunable in the range from 315 nm to 355 nm with energy above 1 μJ (2.6 μJ at 330 nm). Received: 21 July 2000 / Published online: 8 November 2000  相似文献   

16.
A method of determination of the true temporal response function for pump-probe type of experiments with femtosecond time resolution is presented. An analytical formula allowing calculation of group velocity dispersion (GVD) modified and sample thickness-sensitive pump-probe cross correlation function is provided. The reliability of the formula is further experimentally verified with measurements of ultrafast stimulated Raman scattering and transient absorption signals. Received: 31 October 2000 / Revised version: 6 February 2001 / Published online: 27 April 2001  相似文献   

17.
The paper discusses three different artifacts related to two-photon absorption (TPA), stimulated Raman amplification (SRA) and cross-phase modulation (XPM), all intrinsic to transient absorption measurements with femtosecond time resolution. Certain properties of these signals are analysed and shown to superimpose onto measured transient absorption spectra. Ways of reducing the influence of the artifacts discussed are suggested. A simple correcting procedure based on the linear intensity dependence of the artifacts discussed is proposed. Received: 29 May 2001 / Final version: 15 October 2001 / Published online: 29 November 2001  相似文献   

18.
Remote sensing of the atmosphere using ultrashort laser pulses   总被引:2,自引:0,他引:2  
Theoretical and experimental studies were performed on the propagation of ultrashort optical terawatt pulses through the atmosphere. Propagation simulations of intense sub-picosecond pulses show that non-linear processes, such as white light generation, can be initiated at a chosen distance by selecting an appropriate group velocity dispersion. With this technique, a white light continuum was generated in the atmosphere whose spectral distribution was characterised in the visible and near infra-red. Applications of this novel light source for atmospheric remote sensing were investigated, combining lidar and time-resolved broadband absorption spectroscopy techniques. Measurements were performed on the oxygen molecule and water vapour. A comparison between the experimental results and the tabulated spectroscopic data led to an excellent correlation with measurements made on water vapour whereas observations on the oxygen showed discrepancy. This study demonstrates that the remote generation of a white light source represents a new way to access the range-resolved multi-trace gas analysis in the atmosphere. Received: 8 December 1999 / Revised version: 18 May 2000 / Published online: 16 August 2000  相似文献   

19.
We have used a single laser femtosecond optical frequency synthesizer together with a widely tunable Nd:YAG laser to measure the absolute frequency of several absorption lines in molecular iodine around 532 nm. The use of two different repetition frequencies allows us to determine the number of modes used for the frequency measurement unambiguously. The lines also provide data for the determination of improved ro-vibrational constants of the iodine molecule. Received: 3 July 2001 / Published online: 19 September 2001  相似文献   

20.
We demonstrate a novel traveling-wave type optical parametric generator based on 1.25 μm pumping of AgGaS2 that produces tunable, high-power and almost transform-limited 200-fs pulses in the mid-infrared up to 8 μm. Received: 24 January 2000 / Revised version: 1 March 2000 / Published online: 5 April 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号