首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Computational methods are developed for generating Gauss-type quadrature formulae having nodes of arbitrary multiplicity at one or both end points of the interval of integration. Positivity properties of the boundary weights are investigated numerically, and related conjectures are formulated. Applications are made to moment-preserving spline approximation. AMS subject classification (2000) 65D32, 41A15.  相似文献   

2.
Using the covering theory approach (zero-curvature representations with the gauge group SL), we insert the spectral parameter into the Gauss–Mainardi–Codazzi equations in Chebyshev and geodesic coordinates. For each choice, four integrable systems are obtained.  相似文献   

3.
Gil  Amparo  Segura  Javier  Temme  Nico M. 《Numerical Algorithms》2021,86(4):1391-1419
Numerical Algorithms - There have been a couple of papers for the solution of the nonsingular symmetric saddle-point problem using three-parameter iterative methods. In most of them, regions of...  相似文献   

4.
Currently, the method of choice for computing the (n+2)-point Gauss–Lobatto quadrature rule for any measure of integration is to first generate the Jacobi matrix of order n+2 for the measure at hand, then modify the three elements at the right lower corner of the matrix in a manner proposed in 1973 by Golub, and finally compute the eigenvalues and first components of the respective eigenvectors to produce the nodes and weights of the quadrature rule. In general, this works quite well, but when n becomes large, underflow problems cause the method to fail, at least in the software implementation provided by us in 1994. The reason is the singularity (caused by underflow) of the 2×2 system of linear equations that is used to compute the modified matrix elements. It is shown here that in the case of arbitrary Jacobi measures, these elements can be computed directly, without solving a linear system, thus allowing the method to function for essentially unrestricted values of n. In addition, it is shown that all weights of the quadrature rule can also be computed explicitly, which not only obviates the need to compute eigenvectors, but also provides better accuracy. Numerical comparisons are made to illustrate the effectiveness of this new implementation of the method.  相似文献   

5.
We show that the emerging field of discrete differential geometry can be usefully brought to bear on crystallization problems. In particular, we give a simplified proof of the Heitmann–Radin crystallization theorem (Heitmann and Radin in J Stat Phys 22(3):281–287, 1980), which concerns a system of N identical atoms in two dimensions interacting via the idealized pair potential \(V(r)=+\infty \) if \(r<1\), \(-1\) if \(r=1\), 0 if \(r>1\). This is done by endowing the bond graph of a general particle configuration with a suitable notion of discrete curvature, and appealing to a discrete Gauss–Bonnet theorem (Knill in Elem Math 67:1–7, 2012) which, as its continuous cousins, relates the sum/integral of the curvature to topological invariants. This leads to an exact geometric decomposition of the Heitmann–Radin energy into (i) a combinatorial bulk term, (ii) a combinatorial perimeter, (iii) a multiple of the Euler characteristic, and (iv) a natural topological energy contribution due to defects. An analogous exact geometric decomposition is also established for soft potentials such as the Lennard–Jones potential \(V(r)=r^{-6}-2r^{-12}\), where two additional contributions arise, (v) elastic energy and (vi) energy due to non-bonded interactions.  相似文献   

6.
We prove that a Gaussian ensemble of smooth random sections of a real vector bundle \(E\) over compact manifold \(M\) canonically defines a metric on \(E\) together with a connection compatible with it. Additionally, we prove a refined Gauss-Bonnet theorem stating that if the bundle \(E\) and the manifold \(M\) are oriented, then the Euler form of the above connection can be identified, as a current, with the expectation of the random current defined by the zero-locus of a random section in the above Gaussian ensemble.  相似文献   

7.
We provide a new semilocal convergence analysis of the Gauss–Newton method (GNM) for solving nonlinear equation in the Euclidean space. Using a combination of center-Lipschitz, Lipschitz conditions, and our new idea of recurrent functions, we provide under the same or weaker hypotheses than before (Ben-Israel, J. Math. Anal. Appl. 15:243–252, 1966; Chen and Nashed, Numer. Math. 66:235–257, 1993; Deuflhard and Heindl, SIAM J. Numer. Anal. 16:1–10, 1979; Guo, J. Comput. Math. 25:231–242, 2007; Häußler, Numer. Math. 48:119–125, 1986; Hu et al., J. Comput. Appl. Math. 219:110–122, 2008; Kantorovich and Akilov, Functional Analysis in Normed Spaces, Pergamon, Oxford, 1982), a finer convergence analysis. The results can be extended in case outer or generalized inverses are used. Numerical examples are also provided to show that our results apply, where others fail (Ben-Israel, J. Math. Anal. Appl. 15:243–252, 1966; Chen and Nashed, Numer. Math. 66:235–257, 1993; Deuflhard and Heindl, SIAM J. Numer. Anal. 16:1–10, 1979; Guo, J. Comput. Math. 25:231–242, 2007; Häußler, Numer. Math. 48:119–125, 1986; Hu et al., J. Comput. Appl. Math. 219:110–122, 2008; Kantorovich and Akilov, Functional Analysis in Normed Spaces, Pergamon, Oxford, 1982).  相似文献   

8.
The Gauss–Codazzi equations imposed on the elements of the first and the second quadratic forms of a surface embedded in are integrable by the dressing method. This method allows constructing classes of Combescure-equivalent surfaces with the same rotation coefficients. Each equivalence class is defined by a function of two variables (master function of a surface). Each class of Combescure-equivalent surfaces includes the sphere. Different classes of surfaces define different systems of orthogonal coordinates of the sphere. The simplest class (with the master function zero) corresponds to the standard spherical coordinates.  相似文献   

9.
A Gauss–Newton like method is considered to obtain a d–dimensional displacement vector field , which minimizes a suitable distance measure D between two images. The key to find a minimizer is to substitute the Hessian of D with the Sobolev-H2(Ω)d norm for . Since the kernel of the associated semi-norm consists only of the affine linear functions we can show in this way, that the solution of each Newton step is a linear combination of an affine linear transformation and an affine-free nonlinear deformation. Our approach is based on the solution of a sequence of quadratic subproblems with linear constraints. We show that the resulting Karush–Kuhn–Tucker system, with a 3×3 block structure, can be solved uniquely and the Gauss–Newton like scheme can be separated into two separated iterations. Finally, we report on synthetic as well as on real-life data test runs. AMS subject classification (2000) 65F20, 68U10  相似文献   

10.
We define a Gauss factorial N n ! to be the product of all positive integers up to N that are relatively prime to n. It is the purpose of this paper to study the multiplicative orders of the Gauss factorials $\left\lfloor\frac{n-1}{4}\right\rfloor_{n}!$ for odd positive integers n. The case where n has exactly one prime factor of the form p≡1(mod4) is of particular interest, as will be explained in the introduction. A fundamental role is played by p with the property that the order of  $\frac{p-1}{4}!$ modulo p is a power of 2; because of their connection to two different results of Gauss we call them Gauss primes. Our main result is a complete characterization in terms of Gauss primes of those n of the above form that satisfy $\left\lfloor\frac{n-1}{4}\right\rfloor_{n}!\equiv 1\pmod{n}$ . We also report on computations that were required in the process.  相似文献   

11.
Abstract

A generalized Fourier–Gauss transform is an operator acting in a Boson Fock space and is formulated as a continuous linear operator acting on the space of test white noise functions. It does not admit, in general, a unitary extension with respect to the norm of the Boson Fock space induced from the Gaussian measure with variance 1 but is extended to a unitary isomorphism if the Gaussian measure is replaced with the ones with different covariance operators. As an application, unitarity of a generalized dilation is discussed.  相似文献   

12.
In this paper, we prove a positive mass theorem and Penrose-type inequality of the Gauss–Bonnet–Chern mass $m_2$ for the graphic manifold with flat normal bundle.  相似文献   

13.
Gauss’ lemma is not only critically important in showing that polynomial rings over unique factorization domains retain unique factorization; it unifies valuation theory. It figures centrally in Krull’s classical construction of valued fields with pre-described value groups, and plays a crucial role in our new short proof of the Ohm-Ja?ard-Kaplansky theorem on Bezout domains with given lattice-ordered abelian groups. Furthermore, Eisenstein’s criterion on the irreducibility of polynomials as well as Chao’s beautiful extension of Eisenstein’s criterion over arbitrary domains, in particular over Dedekind domains, are also obvious consequences of Gauss’ lemma. We conclude with a new result which provides a Gauss’ lemma for Hermite rings.  相似文献   

14.
In 1970,Rub and Vilms [1]proved a famous result that the Gauss map ofan lsometric immersion into an Euclidean space is harmonic if and only if theimmersion has parallel mean curvature.Here we generalized the resutlt from“iso-  相似文献   

15.
We consider a linear stochastic differential equation with stochastic drift. We study the problem of approximating the solution of such equation through an Ornstein–Uhlenbeck type process, by using direct methods of calculus of variations. We show that general power cost functionals satisfy the conditions for existence and uniqueness of the approximation. We provide some examples of general interest and we give bounds on the goodness of the corresponding approximations. Finally, we focus on a model of a neuron embedded in a simple network and we study the approximation of its activity, by exploiting the aforementioned results.  相似文献   

16.
Procedures and corresponding Matlab software are presented for generating Gauss–Turán quadrature rules for the Laguerre and Hermite weight functions to arbitrarily high accuracy. The focus is on the solution of certain systems of nonlinear equations for implicitly defined recurrence coefficients. This is accomplished by the Newton–Kantorovich method, using initial approximations that are sufficiently accurate to be capable of producing n-point quadrature formulae for n as large as 42 in the case of the Laguerre weight function, and 90 in the case of the Hermite weight function.  相似文献   

17.
We extend a procedure for solving particular fourth order PDEs by splitting them into two linked second order Monge–Ampère equations. We use this for the global study of Blaschke hypersurfaces with prescribed Gauss–Kronecker curvature.  相似文献   

18.
19.
Legendre–Gauss–Lobatto (LGL) grids play a pivotal role in nodal spectral methods for the numerical solution of partial differential equations. They not only provide efficient high-order quadrature rules, but give also rise to norm equivalences that could eventually lead to efficient preconditioning techniques in high-order methods. Unfortunately, a serious obstruction to fully exploiting the potential of such concepts is the fact that LGL grids of different degree are not nested. This affects, on the one hand, the choice and analysis of suitable auxiliary spaces, when applying the auxiliary space method as a principal preconditioning paradigm, and, on the other hand, the efficient solution of the auxiliary problems. As a central remedy, we consider certain nested hierarchies of dyadic grids of locally comparable mesh size, that are in a certain sense properly associated with the LGL grids. Their actual suitability requires a subtle analysis of such grids which, in turn, relies on a number of refined properties of LGL grids. The central objective of this paper is to derive the main properties of the associated dyadic grids needed for preconditioning the systems arising from \(hp\)- or even spectral (conforming or Discontinuous Galerkin type) discretizations for second order elliptic problems in a way that is fully robust with respect to varying polynomial degrees. To establish these properties requires revisiting some refined properties of LGL grids and their relatives.  相似文献   

20.
By means of Chebyshev polynomials of the first kind a correction term for Gauss–Gegenbauer quadrature is derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号