共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon screen-printed electrodes (CSPE) modified with gold nanoparticles present an interesting alternative in the determination of antimony using differential pulse anodic stripping voltammetry. Metallic gold nanoparticles deposits have been obtained by direct electrochemical deposition. Scanning electron microscopy measurements show that the electrochemically synthesized gold nanoparticles are deposited in aggregated form. Any undue effects caused by the presence of foreign ions in the solution were also analyzed to ensure that common interferents in the determination of antimony by ASV. The detection limit for Sb(III) obtained was 9.44 × 10 −10 M. In terms of reproducibility, the precision of the above mentioned method in %R.S.D. values was calculated at 2.69% ( n = 10). The method was applied to determine levels of antimony in seawater samples and pharmaceutical preparations. 相似文献
2.
Carbon screen-printed electrodes (CSPE) modified with silver nanoparticles present an interesting alternative in the determination of lamotrigine (LTG) using differential pulse adsorptive stripping voltammetry.Metallic silver nanoparticle deposits have been obtained by electrochemical deposition. Scanning electron microscopy measurements show that the electrochemically synthesized silver nanoparticles are deposited in aggregated form.The detection limit for this analytical procedure was 3.72 × 10 −7 M. In terms of reproducibility, the precision of the above mentioned method in %R.S.D. values was calculated at 2.58%.The method was applied satisfactorily to the determination of LTG in pharmaceutical preparations. 相似文献
3.
Chronoamperometric assays based on tyrosinase and glucose oxidase (GOx) inactivation have been developed for the monitoring of Cr(III) and Cr(VI). Tyrosinase was immobilized by crosslinking on screen-printed carbon electrodes (SPCEs) containing tetrathiafulvalene (TTF) as electron transfer mediator. The tyrosinase/SPC TTFE response to pyrocatechol is inhibited by Cr(III). This process, that is not affected by Cr(VI), allows the determination of Cr(III) with a capability of detection of 2.0 ± 0.2 μM and a reproducibility of 5.5%. GOx modified screen-printed carbon platinised electrodes (SPC PtEs) were developed for the selective determination of Cr(VI) using ferricyanide as redox mediator. The biosensor was able to discriminate two different oxidation states of chromium being able to reject Cr(III) and to detect the toxic species Cr(VI). Chronoamperometric response of the biosensor towards glucose decreases with the presence of Cr(VI), with a capability of detection of 90.5 ± 7.6 nM and a reproducibility of 6.2%. A bipotentiostatic chronoamperometric biosensor was finally developed using a tyrosinase/SPC TTFE and a GOx/SPC PtE connected in array mode for the simultaneous determination of Cr(III) and Cr(VI) in spiked tap water and in waste water from a tannery factory samples. 相似文献
4.
The refreshable mercury film silver based electrode Hg(Ag)FE applied for determination of Cr(VI) traces using catalytic adsorptive striping voltammetry (CAdSV) will be presented. The film electrode is characterized by its very good surface reproducibility (not less than 2%) and long-term stability (1500–2000 measurement cycles). The mechanical refreshing of mercury film is realized in the specially constructed device, in a time shorter than 1–2 s. In the paper, it will be proved that a mechanically weak hanging mercury drop electrode (HMDE) may be substituted by mercury film Hg(Ag)FE electrode with a surface area adjustable from 1.5 to 12 mm2. For the electrode surface 4 mm2 the detection limit obtained for Cr(VI) was 0.19 nM, while the linearity range measured for a 20 s accumulation time was between 0.5 and 50 nM. The relative standard deviation (R.S.D.) in determination of Cr(VI) varied from 1 to 5%. The influence of the excess of Cr(III) on determination of Cr(VI) was analyzed using samples from the Dobczyce reservoir spiked with known amounts of Cr(VI) and Cr(III). 相似文献
5.
A new electrochemical method has been described and characterized for the determination of cocaine using screen-printed biosensors. The enzyme cytochrome P450 was covalently attached to screen-printed carbon electrodes. Experimental design methodology has been performed to optimize the pH and the applied potential, both variables that have an influence on the chronoamperometric determination of the drug. This method showed a reproducibility of 3.56% ( n = 4) related to the slopes of the calibration curves performed in the range from 19 up to 166 nM. It has been probed the used of this kind of biosensors in the determination of cocaine in street samples, with an average capability of detection of 23.05 ± 3.53 nM ( n = 3, α = β = 0.05). 相似文献
6.
The construction and performance characteristics of different phosphate ion-selective electrodes are described. Three types of electrodes are demonstrated, namely screen-printed, carbon paste and the conventional PVC membrane electrodes. The cited electrodes are based on bisthiourea ionophores and show a considerable selectivity towards hydrogenphosphate with Nernstian slopes depending on the type of the electrode and the ionophore used. Matrix compositions of each electrode are optimised on the basis of effects of type and concentration of the ionophore as well as influence of the selected plasticizers. The screen-printed electrodes work satisfactorily in the concentration range 10 −5 to 10 −2 mol L −1 with anionic Nernstian compliance (32.8 mV/decade activity) and detection limit 4.0 × 10 −6 mol L −1. The screen-printed electrodes show fast response time of about 2.2 s and exhibit adequate shelf-life (4 months). The fabricated electrodes can be also successfully used in the potentiometric titration of HPO 42− with Ba 2+. 相似文献
7.
A new type of screen-printed ion-selective electrode for the determination of cetylpyridinium chloride (CPC) is presented. These new electrodes involve in situ, modified and unmodified screen-printed ion-selective electrodes for the determination of CPC. The screen-printed electrodes (SPEs) show a stable, near-Nernstian response for 1 × 10 −2 to 1 × 10 −6 M CPC at 25 °C over the pH range 2-8 with cationic slope 60.66 ± 1.10. The lower detection limit is found to be 8 × 10 −7 M and response time of about 3 s and exhibit adequate shelf-life (6 months). The fabricated electrodes can be also successfully used in the potentiometric titration of CPC with sodium tetraphenylborate (NaTPB). The analytical performances of the SPEs are compared with those for carbon paste electrode (CPE) and polyvinyl chloride (PVC) electrodes. The method is applied for pharmaceutical preparations with a percentage recovery of 99.60% and R.S.D. = 0.53. The frequently used CPC of analytical and technical grade as well as different water samples has been successfully titrated and the results obtained agreed with those obtained with commercial electrode and standard two-phase titration method. The sensitivity of the proposed method is comparable with the official method and ability of field measurements. 相似文献
8.
Screen-printed carbon electrodes have been modified with tetrathiafulvalene and sulfite oxidase enzyme for the sensitive and selective detection of sulfite. Amperometric experimental conditions were optimized taking into account the importance of quantifying sulfite in wine samples and the inherent complexity of these samples, particularly red wine. The biosensor responds to sulfite giving a cathodic current (at +200 mV vs screen-printed Ag/AgCl electrode and pH 6) in a wide concentration range, with a capability of detection of 6 μM ( α = β = 0.05) at 60 °C. The method has been applied to the determination of sulfite in white and red samples, with averages recoveries of 101.5% to 101.8%, respectively. 相似文献
9.
A simple procedure for the chemical synthesis of bismuth nanoparticles and subsequent adsorption on commercial screen-printed carbon electrodes offer reliable quantitation of trace zinc, cadmium and lead by anodic stripping square-wave voltammetry in nondeareated water samples. The influence of two hydrodynamic configurations (convective cell and flow cell) and the effect of various experimental variables upon the stripping signals at the bismuth-coated sensor are explored. The square-wave peak current signal is linear over the low ng mL −1 range (120 s deposition), with detections limits ranging from 0.9 to 4.9 ng mL −1 and good precision. Applicability to waste water certified reference material and drinking water samples is demonstrated. The attractive behaviour of the new disposable Bi nanoparticles modified carbon strip electrodes, coupled with the negligible toxicity of bismuth, hold great promise for decentralized heavy metal testing in environmental and industrial effluents waters. 相似文献
10.
This paper describes the characterization of the gold-catalyzed deposition of silver on graphite screen-printed electrodes (SPEs) using electrochemical impedance spectroscopy (EIS) and the application of this approach to the development of impedimetric immunosensors. After applying −0.1 V for 45 s, the amount of electrodeposited silver quantitatively changes the magnitude of two elements of the electrical equivalent circuit: the interface capacitance, Ci, and the charge-transfer resistance, RCT. Better correlations have been found when considering the RCT since this parameter is almost exclusively dependent on the amount of deposited silver under these experimental conditions. This approach has been successfully applied to the development of an impedimetric immunosensor for aflatoxin M 1. The RCT magnitude shows good correlation with the amount of gold immobilized on the electrode surface after a competitive assay and thus, with the toxin concentration. This approach has been found sensitive in a wide range of concentrations, from 15 to 1000 free-AFM 1 ppt with a limit of detection of 12 ppt. 相似文献
11.
Three different commercial carbon nanomaterial-modified screen-printed electrodes based on graphene, carbon nanotubes and carbon nanofibers were pioneeringly tested as electrode platforms for the plating with Sb film. They were microscopically and analytically compared to each other and to the most conventional unmodified carbon screen-printed electrode (SPCE). The obtained detection and quantification limits suggest that the in-situ antimony film electrode prepared from carbon nanofibers modified screen-printed electrode (SbSPCE-CNF) produces a better analytical performance as compared to the classical SPCE modified with antimony for Pb(II) and Cd(II) determination, approving its appropriateness for measuring low μg L −1 levels of the considered metals. In-situ SbSPCE-CNF was successfully used for the simultaneous determination of Pb(II) and Cd(II) ions, by means of differential pulse anodic stripping voltammetry, in a certified reference estuarine water sample with a very high reproducibility and good trueness. 相似文献
12.
A novel composite film modified glassy carbon electrode has been fabricated and characterized by scanning electron microscope (SEM) and voltammetry. The composite film comprises of single-wall carbon nanotube (SWNT), gold nanoparticle (GNP) and ionic liquid (i.e. 1-octyl-3-methylimidazolium hexafluorophosphate), thus has the characteristics of them. The resulting electrode shows good stability, high accumulation efficiency and strong promotion to electron transfer. On it, chloramphenicol can produce a sensitive cathodic peak at −0.66 V (versus SCE) in pH 7.0 phosphate buffer solutions. Parameters influencing the voltammetric response of chloramphenicol are optimized, which include the composition of the film and the operation conditions. Under the optimized conditions, the peak current is linear to chloramphenicol concentration in the range of 1.0 × 10 −8-6.0 × 10 −6 M, and the detection limit is estimated to be 5.0 × 10 −9 M after an accumulation for 150 s on open circuit. The electrode is applied to the determination of chloramphenicol in milk samples, and the recoveries for the standards added are 97.0% and 100.3%. In addition, the electrochemical reaction of chloramphenicol and the effect of single-wall carbon nanotube, gold nanoparticle and ionic liquid are discussed. 相似文献
13.
Cyclic voltammetry was used to investigate the electrochemical behaviour of triclosan (2,2,4′-trichloro-2′-hydroxydiphenyl ether) at a screen-printed carbon electrode (SPCE). It was found that a single anodic peak occurred over the pH range 6.0–12.0; this peak was considered to result from an irreversible oxidation reaction at the phenolic moiety. A plot of Ep versus pH was constructed and from the break point a p Ka value of 7.9 was obtained, thus agreeing with the literature value. Detailed voltammetric studies were performed at pH 10, where the analyte exists as an anion. It was demonstrated that, at an initial potential of 0 V, the anion underwent electrosorption prior to electrochemical oxidation. The oxidation reaction appeared to involve a one-electron transfer, as deduced from a calculated na value of 0.5; the same value was obtained at pH 7.0. In contrast to triclosan, triclosan monophosphate was found to be electrochemically inactive when subjected to voltammetry under the stated conditions. The electrochemical oxidation of triclosan at a SPCE was exploited for its determination (0.3%) in commercial toothpaste and mouthrinse products using differential pulse voltammetry. The recovery and precision data indicated that this approach may have application in routine quality control analysis. 相似文献
14.
采用循环伏安法将纳米金电沉积于玻碳电极表面,制备了纳米金修饰玻碳电极(NG/GCE).在pH3.29的Britton-Robinson(B-R)缓冲溶液中,用循环伏安法研究了芦丁在NG/GCE上的电化学行为.结果表明,NG/GCE对芦丁的氧化还原反应有良好的电催化作用.用方波伏安法测得芦丁的还原峰电流与其浓度在2.0×10-8~2.0×10-6mol/L范围内呈线性关系,检出限为1.0×10-8mol/L(S/N=3). 相似文献
15.
Carboxylated multiwalled carbon nanotubes (MWCNT-COOH) dissolved in a mixture of DMF:water were used to modify the surfaces of commercially available screen-printed electrodes (SPEs). The morphology of the MWCNT-COOH and the modified SPEs was characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM), respectively. SEM analysis showed a porous structure formed by a film of disordered nanotubes on the surface of the working electrode.The modification procedure with MWCNT-COOH was optimised and it was applied to unify the electrochemical behaviour of different gold and carbon SPEs by using p-aminophenol as the benchmark redox system. The analytical advantages of the MWCNT-COOH-modified SPEs as voltammetric and amperometric detectors as well as their catalytic properties were discussed through the analysis, for instance, of dopamine and hydrogen peroxide. Experimental results show that the electrochemical active area of the nanotube-modified electrode increased around 50%. The repeatability of the modification methodology is around 6% (R.S.D.) and the stability of MWCNT-COOH-modified SPEs is ensured for, at least, 2 months. 相似文献
16.
A new method for the pretreatment of screen-printed carbon electrodes (SPCEs) by two successive steps was proposed. In step one, fresh SPCEs were soaked into NaOH with high concentration (e.g. 3 M) for tens to hundreds of minutes, and the resulted electrodes were called as SPCE-I. In step two, SPCE-I were pre-anodized in low concentration of NaOH, which were designated as SPCE-II. The pretreated electrodes showed remarkable enhancement in heterogeneous electron transfer rate constant ( k0) increased from 1.6 × 10 −4 cm s −1 at the fresh SPCE to 1.1 × 10 −2 cm s −1 at SPCE-I for Fe(CN) 63−/4− couple. The peak to peak separation (Δ Ep) in cyclic voltammetry was reduced from ca. 480 to 84 mV, indicating that the electrochemical reversibility was greatly promoted, possibly due to the removing of polymers/oil binder from the electrode surfaces. The electroactive area ( Aea) of the electrode was increased by a factor of 17 after pretreatment in step one. Further analysis by the electrochemical impedance method showed that the electron transfer resistance ( Rct) decreased from ca. 2100 to 1.4 Ω. These pretreated electrodes, especially SPCE-II, exhibited excellent electrocatalytic behavior for the redox of dopamine (DA). Interference from ascorbic acid (AA) in the detection of DA at SPCE-II could be effectively eliminated due to the anodic peak separation (190 mV) between DA and AA, which resulted from the functionalization of the electrode surface in the pretreatment of step two. Under optimum conditions, current responses to DA were linearly changed in two concentration intervals, one was from 3.0 × 10 −7 to 9.8 × 10 −6 M, and the other was from 9.8 × 10 −6 to 3.3 × 10 −4 M. The detection limit for DA was down to 1.0 × 10 −7 M. 相似文献
17.
A novel method for selective determination of Cr(III) and Cr(VI) in environmental water samples was developed based on target-induced fluorescence quenching of glutathione-stabilized gold nanoclusters (GSH-Au NCs). Fluorescent GSH-Au NCs were synthesized by a one-step approach employing GSH as reducing/protecting reagent. It was found that Cr(III) and Cr(VI) showed pH-dependent fluorescence quenching capabilities for GSH-Au NCs, and thus selective determination of Cr(III) and Cr(VI) could be achieved at different pHs. Addition of EDTA was able to effectively eliminate the interferences from other metal ions, leading to a good selectivity for this method. Under optimized conditions, Cr(III) showed a linear range of 25–3800 μg L −1 and a limit of detection (LOD) of 2.5 μg L −1. The Cr(VI) ion demonstrated a linear range of 5–500 μg L −1 and LOD of 0.5 μg L −1. The run-to-run relative standard deviations ( n = 5) for Cr(III) and Cr(VI) were 3.9% and 2.8%, respectively. The recoveries of Cr(III) and Cr(VI) in environmental water samples were also satisfactory (76.3–116%). This method, with its simplicity, low cost, high selectivity and sensitivity, could be used as a promising tool for chromium analysis in environmental water samples. 相似文献
18.
In acidic medium and in the presence of chloride ions 2-[2-(4-methoxy-phenylamino)-vinyl]-1,3,3-trimethyl-3H-indolium chloride forms complex with Cr(VI). The optimum conditions (pH, concentration of Cl - and the complex forming reagent) of the separation and extraction of Cr(VI) into toluene using this basic dye as a complexing reagent have been determined and the possible interferences of Ca, Mg, Na, K, Cr(III), Ni, Pb, Hg, Mn, Al, Cu have been studied. An electrothermal atomic absorption spectrometer (GFAAS) was used for the determination of Cr(VI). The detection limit of the method for Cr(VI) found to be 0.15 μg dm − 3 and RSD for spiked drinking water was better than 3%. 相似文献
19.
A new electrochemical method for the quantitation of bacteria that is rapid, inexpensive, and amenable to miniaturization
is reported. Cyclic voltammetry was used to quantitate M. luteus, C. sporogenes, and E. coli JM105 in exponential and stationary phases, following exposure of screen-printed carbon working electrodes (SPCEs) to lysed
culture samples. Ferricyanide was used as a probe. The detection limits (3 s) were calculated and the dynamic ranges for E. coli (exponential and stationary phases), M. luteus (exponential and stationary phases), and C. sporogenes (exponential phase) lysed by lysozyme were 3 × 10 4 to 5 × 10 6 colony-forming units (CFU) mL −1, 5 × 10 6 to 2 × 10 8 CFU mL −1 and 3 × 10 3 to 3 × 10 5 CFU mL −1, respectively. Good overlap was obtained between the calibration curves when the electrochemical signal was plotted against
the dry bacterial weight, or between the protein concentration in the bacterial lysate. In contrast, unlysed bacteria did
not change the electrochemical signal of ferricyanide. The results indicate that the reduction of the electrochemical signal
in the presence of the lysate is mainly due to the fouling of the electrode by proteins. Similar results were obtained with
carbon-paste electrodes although detection limits were better with SPCEs. The method described herein was applied to quantitation
of bacteria in a cooling tower water sample.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
20.
An in-situ antimony film screen-printed carbon electrode ( in-situ SbSPCE) was successfully used for the determination of Cu(II) simultaneously with Cd(II) and Pb(II) ions, by means of differential pulse anodic stripping voltammetry (DPASV), in a certified reference groundwater sample with a very high reproducibility and good trueness. This electrode is proposed as a valuable alternative to in-situ bismuth film electrodes, since no competition between the electrodeposited copper and antimony for surface sites was noticed. In-situ SbSPCE was microscopically characterized and experimental parameters such as deposition potential, accumulation time and pH were optimized. The best voltammetric response for the simultaneous determination of Cd(II), Pb(II) and Cu(II) ions was achieved when deposition potential was −1.2 V, accumulation time 120 s and pH 4.5. The detection and quantification limits at levels of μg L −1 suggest that the in-situ SbSPCE could be fully suitable for the determination of Cd(II), Pb(II) and Cu(II) ions in natural samples. 相似文献
|