首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Physics letters. [Part B]》2006,632(5-6):597-604
Phantom cosmology allows to account for dynamics and matter content of the universe tracing back the evolution to the inflationary epoch, considering the transition to the non-phantom standard cosmology (radiation/matter dominated eras) and recovering the today observed dark energy epoch. We develop the unified phantom cosmology where the same scalar plays the role of early time (phantom) inflaton and late-time dark energy. The recent transition from decelerating to accelerating phase is described too by the same scalar field. The (dark) matter may be embedded in this scheme, giving the natural solution of the coincidence problem. It is explained how the proposed unified phantom cosmology can be fitted against the observations which opens the way to define all the important parameters of the model.  相似文献   

2.
Within the framework of an explicit dynamical model, in which we calculate the radiatively-corrected, tree-level potential that sets up inflation, we show that the inflaton can be a significant part of dark matter today. We exhibit potentials with both a maximum and a minimum. Using the calculated position of the potential minimum, and an estimate for fluctuations of the inflaton field in the early universe, we calculate a contribution to the matter energy density of in the present universe, from cold inflatons with mass of about . We show that the inflaton might decay in a specific way, and we calculate a possible lifetime that is several orders of magnitude greater than the present age of the universe. Inflaton decay is related to an interaction which, together with a spontaneous breakdown of CP invariance at a cosmological energy scale, can give rise to a neutrino-antineutrino asymmetry just prior to the time of electroweak symmetry breaking. Received: 26 November 1997 / Revised version: 8 December 1997 / Published online: 24 March 1998  相似文献   

3.
We discuss a scenario that gravitinos produced non-thermally by an inflaton decay constitute dark matter in the present universe. We find that this scenario is realized for wide ranges of the inflaton mass and the vacuum expectation value. What is intriguing about this scenario is that the gravitino dark matter can have a relatively large free streaming length at matter-radiation equality, which can be probed by future observation on QSO-galaxy strong lens system.  相似文献   

4.
We propose a simple model where a gauge-invariant inflaton is responsible for cosmic inflation and generates the seed for structure formation, while its relic thermal abundance explains the missing matter of the Universe in the form of cold dark matter. The inflaton self-coupling also explains the observed neutrino masses. All the virtues can be attained in a minimal extension of the standard model gauge group around the TeV scale. We can also unveil these properties of an inflaton in forthcoming space and ground based experiments.  相似文献   

5.
We show how to enlarge the νMSM (the minimal extension of the Standard Model by three right-handed neutrinos) to incorporate inflation and provide a common source for electroweak symmetry breaking and for right-handed neutrino masses. In addition to inflation, the resulting theory can explain simultaneously dark matter and the baryon asymmetry of the Universe; it is consistent with experiments on neutrino oscillations and with all astrophysical and cosmological constraints on sterile neutrino as a dark matter candidate. The mass of inflaton can be much smaller than the electroweak scale.  相似文献   

6.
7.
We consider the interaction between dark matter and dark energy in the framework of holographic dark energy, and propose a natural and physically plausible form of interaction, in which the interacting term is proportional to the product of the powers of the dark matter and dark energy densities. We investigate the cosmic evolution in such models. The impact of the coupling on the dark matter and dark energy components may be asymmetric. While the dark energy decouples from the dark matter at late time, just as other components of the cosmic fluid become decoupled as the universe expands, interestingly, the dark matter may actually become coupled to the dark energy at late time. We shall call such a phenomenon incoupling. We use the latest type Ia supernovae data from the SCP team, baryon acoustics oscillation data from SDSS and 2dF surveys, and the position of the first peak of the CMB angular power spectrum to constrain the model. We find that the interaction term which is proportional to the first power product of the dark energy and dark matter densities gives an excellent fit to the current data.  相似文献   

8.
In this work we perform some studies related to dark energy. Firstly, we propose a dynamical approach to explain the dark energy contents of the universe. We assume that a massless scalar field couples to the Hubble parameter with some Planck-mass suppressed interactions. This scalar field develops a Hubble parameter-dependent (thus time-dependent) vacuum expectation value, which renders a time-independent relative density for the dark energy and thus can explain the coincidence of the dark energy density of the universe. Furthermore, we assume that the dark matter particle is metastable and decays very late into the dark energy scalar field. Such a conversion of matter to dark energy can give an explanation for the starting time of the accelerating expansion of the universe. Secondly, we introduce multiple Affleck-Dine fields to the landscape scenario of dark energy in order to have the required baryon-asymmetrical universe. PACS: 95.36. + x, 95.35. + d  相似文献   

9.
Weak gravitational lensing is rapidly becoming one of the principal probes of dark matter and dark energy in the universe. In this brief review we outline how weak lensing helps determine the structure of dark matter halos, measure the expansion rate of the universe, and distinguish between modified gravity and dark energy explanations for the acceleration of the universe. We also discuss requirements on the control of systematic errors so that the systematics do not appreciably degrade the power of weak lensing as a cosmological probe.  相似文献   

10.
We propose that the inflaton is coupled to ordinary matter only gravitationally and that it decays into a completely hidden sector. In this scenario both baryonic and dark matter originate from the decay of a flat direction of the minimal supersymmetric standard model, which is shown to generate the desired adiabatic perturbation spectrum via the curvaton mechanism. The requirement that the energy density along the flat direction dominates over the inflaton decay products fixes the flat direction almost uniquely. The present residual energy density in the hidden sector is typically shown to be small.  相似文献   

11.
In models where dark matter and dark energy interact non-minimally, the total amount of matter in a fixed comoving volume may vary from the time of recombination to the present time due to energy transfer between the two components. This implies that, in interacting dark energy models, the fractional matter density estimated using the cosmic microwave background assuming no interaction between dark matter and dark energy will in general be shifted with respect to its true value. This may result in an incorrect determination of the equation of state of dark energy if the interaction between dark matter and dark energy is not properly accounted for, even if the evolution of the Hubble parameter as a function of redshift is known with arbitrary precision. In this Letter we find an exact expression, as well as a simple analytical approximation, for the evolution of the effective equation of state of dark energy, assuming that the energy transfer rate between dark matter and dark energy is described by a simple two-parameter model. We also provide analytical examples where non-phantom interacting dark energy models mimic the background evolution and primary cosmic microwave background anisotropies of phantom dark energy models.  相似文献   

12.
We propose a model with a compensating scalar field whose back reaction to the cosmological curvature cancels possible vacuum energy density down to the terms of the order of the time-dependent critical energy density. Thus, the model simultaneously solves the mystery of the compensation of vacuum energy with an accuracy of 120 orders of magnitude and explains the existence of the observed dark energy. At an early stage, the suggested cosmological model might experience exponential expansion without an additional inflaton field. However, the solution found is unstable with respect to small perturbations. The stability can be ensured by introducing nonanalytical terms depending upon the absolute value of the curvature scalar R. Unfortunately, stable solutions do not describe realistic cosmology at the matter-dominated stage.  相似文献   

13.
We consider a spatially homogeneous and totally anisotropic Bianchi-I space-time with perfect fluid (dark matter and standard visible matter) and anisotropic dark energy, which has dynamical energy density. The two sources are assumed to interact minimally and therefore their energy momentum tensors are conserved separately. Using suitable physical assumptions, the field equations are solved exactly. Various dark energy models are studied and it is found that quintessence model is suitable for describing the present evolution of the universe. The geometrical and kinematical features of the models and the behavior of the anisotropy of the dark energy, are examined in detail.  相似文献   

14.
We propose the simplest model of teleparallel dark energy with purely a non-minimal coupling to gravity but no self-potential, a single model possessing various interesting features: simplicity, self-potential-free, the guaranteed late-time cosmic acceleration driven by the non-minimal coupling to gravity, tracker behavior of the dark energy equation of state at earlier times, a crossing of the phantom divide at a late time, and the existence of a finite-time future singularity. We find the analytic solutions of the dark-energy scalar field respectively in the radiation, matter, and dark energy dominated eras, thereby revealing the above features. We further illustrate possible cosmic evolution patterns and present the observational constraint of this model obtained by numerical analysis and data fitting.  相似文献   

15.
We study the holographic dark energy model in a generalized scalar tensor theory. In a universe filled with cold dark matter and dark energy, the effect of potential of the scalar field is investigated in the equation of state parameter. We show that for a various types of potentials, the equation of state parameter is negative and transition from deceleration to acceleration expansion of the universe is possible.  相似文献   

16.
Yu Cheng  Wei Liao  Qi-Shu Yan 《中国物理C(英文版)》2022,46(6):063103-063103-10
We explore the possibility that the dark matter relic density is not produced by a thermal mechanism directly, but by the decay of other heavier dark-sector particles which themselves can be produced by the thermal freeze-out mechanism. Using a concrete model with light dark matter from dark sector decay, we study the collider signature of the dark sector particles associated with Higgs production processes. We find that future lepton colliders could be a better place to probe the signature of this kind of light dark matter model than hadron colliders such as LHC. Also, we find that a Higgs factory with center-of-mass energy 250 GeV has a better potential to resolve the signature of this kind of light dark matter model than a Higgs factory with center-of-mass energy 350 GeV.  相似文献   

17.
We investigate the possibility that both the baryon asymmetry of the universe and the observed cold dark matter density are generated by decays of a heavy scalar field which dominates the universe before nucleosynthesis. Since baryons and cold dark matter have common origin, this mechanism yields a natural explanation of the similarity of the corresponding energy densities. The cosmological moduli and gravitino problems are avoided.  相似文献   

18.
We consider a field theory model of coupled dark energy which treats dark energy as a three-form field and dark matter as a spinor field. By assuming the effective mass of dark matter as a power-law function of the three-form field and neglecting the potential term of dark energy, we obtain three solutions of the autonomous system of evolution equations, including a de Sitter attractor, a tracking solution and an approximate solution. To understand the strength of the coupling, we confront the model with the latest Type Ia Supernova, Baryon Acoustic Oscillations and Cosmic Microwave Background radiation observations, with the conclusion that the combination of these three databases marginalized over the present dark matter density parameter \(\Omega _{m0}\) and the present three-form field \(\kappa X_{0}\) gives stringent constraints on the coupling constant, \(-\,0.017< \lambda <0.047\) (\(2\sigma \) confidence level), by which we present the model’s applicable parameter range.  相似文献   

19.
We investigate the behavior of dark energy interacting with dark matter and unparticle in the framework of loop quantum cosmology. In four toy models, we study the interaction between the cosmic components by choosing different coupling functions representing the interaction. We found that there are only two attractor solutions namely dark energy dominated and dark matter dominated Universe. The other two models are unstable, as they predict either a dark energy filled Universe or one completely devoid of it.  相似文献   

20.
We report results of a search for light (?10 GeV) particle dark matter with the XENON10 detector. The event trigger was sensitive to a single electron, with the analysis threshold of 5 electrons corresponding to 1.4 keV nuclear recoil energy. Considering spin-independent dark matter-nucleon scattering, we exclude cross sections σ(n)>7×10(-42) cm(2), for a dark matter particle mass m(χ)=7 GeV. We find that our data strongly constrain recent elastic dark matter interpretations of excess low-energy events observed by CoGeNT and CRESST-II, as well as the DAMA annual modulation signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号