首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Despite the relevance of current-induced magnetic domain wall (DW) motion for new spintronics applications, the exact details of the current-domain wall interaction are not yet understood. A property intimately related to this interaction is the intrinsic DW resistivity. Here, we investigate experimentally how the resistivity inside a DW depends on the wall width Δ, which is tuned using focused ion beam irradiation of Pt/Co/Pt strips. We observe the nucleation of individual DWs with Kerr microscopy, and measure resistance changes in real time. A 1/Δ(2) dependence of DW resistivity is found, compatible with Levy-Zhang theory. Also quantitative agreement with theory is found by taking full account of the current flowing through each individual layer inside the multilayer stack.  相似文献   

2.
We exploit the ability to precisely control the magnetic domain structure of perpendicularly magnetized Pt/Co/Pt trilayers to fabricate artificial domain wall arrays and study their transport properties. The scaling behavior of this model system confirms the intrinsic domain wall origin of the magnetoresistance, and systematic studies using domains patterned at various angles to the current flow are excellently described by an angular-dependent resistivity tensor containing perpendicular and parallel domain wall resistivities. We find that the latter are fully consistent with Levy-Zhang theory, which allows us to estimate the ratio of minority to majority spin carrier resistivities, rho downward arrow/rho upward arrow approximately 5.5, in good agreement with thin film band structure calculations.  相似文献   

3.
Magnetic relaxation measurements were carried out by magneto-optical Kerr effect on exchange biased (Pt/Co)5/Pt/FeMn multilayers with perpendicular anisotropy. In these films the coercivity and the exchange bias field vary with Pt spacer thickness, and have a maximum for 0.2 nm. Hysteresis loops do not reveal important differences between the reversal for ascending and descending fields. Relaxation measurements were fitted using Fatuzzo’s model, which assumes that reversal occurs by domain nucleation and domain wall propagation. For 2 nm thick Pt spacer (no exchange bias) the reversal is dominated by domain wall propagation starting from a few nucleation centers. For 0.2 nm Pt spacer (maximum exchange bias) the reversal is strongly dominated by nucleation, and no differences between the behaviour of the ascending and descending branches can be observed. For 0.4 nm Pt spacer (weaker exchange bias) the nucleation density becomes less important, and the measurements reveal a much stronger density of nucleation centers in the descending branch.  相似文献   

4.
We theoretically and experimentally analyze the pinning of a magnetic domain wall (DW) at engineered anisotropy variations in Pt/Co/Pt strips with perpendicular magnetic anisotropy. An analytical model is derived showing that a step in the anisotropy acts as an energy barrier for the DW. Quantitative measurements are performed showing that the anisotropy can be controlled by focused ion beam irradiation with Ga ions. This tool is used to experimentally study the field-induced switching of nanostrips which are locally irradiated. The boundary of the irradiated area indeed acts as a pinning barrier for the domain wall and the pinning strength increases with the anisotropy difference. Varying the thickness of the Co layer provides an additional way to tune the anisotropy, and it is shown that a thinner Co layer gives a higher starting anisotropy thereby allowing tunable DW pinning in a wider range of fields. Finally, we demonstrate that not only the anisotropy itself, but also the width of the anisotropy barrier can be tuned on the length scale of the domain wall.  相似文献   

5.
We have studied the field-driven motion of a pair of coupled Bloch domain walls in a perpendicular magnetic anisotropy Pt/Co/Pt/Co/Pt multilayer Hall bar. The nucleation of an isolated but coincident pair of walls in the two Co layers, observed by Kerr microscopy, took place at an artificial nucleation site created by Ga+ ion irradiation. The average velocity v of the wall motion was calculated from time-resolved magnetotransport measurements at fixed driving field H, where the influence of the extraordinary Hall effect leads to the observation of voltages at the longitudinal resistance probes. We observed a good fit to the scaling relation lnvH−1/4, consistent the motion of a single 1-dimensional wall moving in a 2-dimensional disordered medium in the creep regime: the two walls are coupled together into a 1-dimensional composite object.  相似文献   

6.
The magnetization reversal is studied in magnetron sputtered artificial superstructures of the form [Ni/Pt]6/Pt(x)/[Co/Pt]6 with perpendicular anisotropy, in which the [Co/Pt]6 stacks have higher coercivity than the [Ni/Pt]6. For x≥2 nm the two stacks reverse separately and exhibit characteristic stepped loops with a “plateau” in the region between the two switching fields. First-Order Reversal Curves (FORCs) reveal that the maximum coupling is obtained for x=1.5 nm. While each of the Ni/Pt and Co/Pt stacks by itself is thin enough to reverse in large domains when they are coupled, formation of maze like domains is observed. In this case some reversibility of the demagnetization curves associated with interfacial domain wall pinning appears while in the rest of the cases the reversal mechanism is based on lateral domain wall pinning with low reversibility. In the loops monitored by Extraordinary Hall Effect (EHE) measurements this “plateau” appears as a hump due to the different sign of the EHE coefficient between the [Ni/Pt]6 and [Co/Pt]6.  相似文献   

7.
We have investigated the domain wall resistance for two types of domain walls in a (Ga,Mn)As Hall bar with perpendicular magnetization. A sizeable positive intrinsic DWR is inferred for domain walls that are pinned at an etching step, which is quite consistent with earlier observations. However, much lower intrinsic domain wall resistance is obtained when domain walls are formed by pinning lines in unetched material. This indicates that the spin transport across a domain wall is strongly influenced by the nature of the pinning.  相似文献   

8.
We studied the magnetoresistance behavior of epitaxial Fe wires grown on GaAs(1 1 0) with varying widths at room temperature. Single nanowires show a wire width (w) dependence of the coercive field, which increases with 1/w for decreasing wire widths. This enables the pinning of a single domain wall in the connection area of two wires with different widths. Magnetoresistance measurements of such wire structures clearly reveal resistance contributions arising from a domain wall. The presence of the domain wall is proven by photoemission electron-microscopy with synchrotron radiation. Moreover, micromagnetic simulations are performed to determine the spin orientations, especially within the domain wall. This permits us to calculate the anisotropic magnetoresistance caused by the domain wall. Taking this into account, we determine the intrinsic domain wall resistance, for which we found a positive value of 0.2%, in agreement with theoretical predictions.  相似文献   

9.
Co/Pt multilayers with perpendicular magnetic anisotropy exhibit an exchange bias when covered with an IrMn layer. The exchange bias field, which is about 7 mT for 3 Co/Pt bilayer repetitions and a Co layer thickness of 5 Å, can be increased up to 16.5 mT by the insertion of a thin Pt layer at the Co/IrMn interface. The interfacial magnetic anisotropy of the Co/IrMn interface (KSCo/IrMn =-0.09 mJ/m2) favours in-plane magnetization and tends to tilt the Co spins away from the film normal. Dynamical measurements of the magnetization reversal process reveal that both thermally activated spin reversal in the IrMn layer and domain wall nucleation in the Co/Pt multilayer influence the interfacial spin structure and therefore the strength of the perpendicular exchange bias field.  相似文献   

10.
We create mesoscopic point and line defects by scanning probe lithography to control the magnetization reversal process in Pt/Co/Pt ultra thin film devices. The domain wall propagation near the defects is studied by the Kerr microscopy and extraordinary Hall effect measurements. The observed domain wall pinning is used to block and channel the domain expansion and to create artificial domain patterns.  相似文献   

11.
Extraordinary Hall effect was used to detect the propagation of a domain wall in magnetic devices patterned in sputter grown Pt/Co(1 nm)/Pt sandwiches with perpendicular easy magnetization axis. In such films, domain walls propagate as coherent 1D nano-object in a 2D medium with weak fluctuation energy density. In a patterned device, the competition between global wall energy and Zeeman energy strongly influences the wall propagation.  相似文献   

12.
The reversal process of thin FePt/Pt(001) layers with perpendicular magnetization was observed by magnetic imaging techniques. Reversal occurs through domain wall propagation across a strongly disordered rectangular lattice of linear anisotropy defects. Micromagnetic simulations of domain wall pinning allowed deriving an analytical model of the reversal process unto percolation threshold. Quantitative agreement is found between the calculated and experimental fractal dimension of the reversed domain.  相似文献   

13.
The velocity of domain walls driven by current in zero magnetic field is measured in permalloy nanowires using real-time resistance measurements. The domain wall velocity increases with increasing current density, reaching a maximum velocity of approximately 110 m/s when the current density in the nanowire reaches approximately 1.5 x 10(8) A/cm(2). Such high current driven domain wall velocities exceed the estimated rate at which spin angular momentum is transferred to the domain wall from the flow of spin polarized conduction electrons, suggesting that other driving mechanisms, such as linear momentum transfer, need to be taken into account.  相似文献   

14.
Bit patterned media (BPM) which utilize each magnetic nanostructured dot as one recorded bit has attracted much interest as a promising candidate for future high-density magnetic recording. In this study, the magnetization reversal behaviors of nanostructured L10-FePt, Co/Pt multilayer (ML), and CoPt/Ru dots are investigated. For Co/Pt and CoPt/Ru nanodots, the bi-stable state is maintained in a very wide size range up to several hundred nm, and the magnetization reversal is dominated by the nucleation of a small reversed nucleus with the dimension of domain wall width. On the other hand, the critical size for the bi-stability of L10-FePt is about 60 nm, and its magnetization reversal proceeds via domain wall displacement even for such a small dot size. These reversal behaviors, depending on the magnetic materials, might be attributed to the difference in structural inhomogeneity, such as defects. In addition to the magnetic properties, the structural uniformity of the material could be crucial for the BPM application.  相似文献   

15.
Thermal stability of thin Pt/Cr/Co multilayers and the subsequent changes in their structural, magnetic, and magneto-optical properties are reported. We observe CoCrPt ternary alloy phase formation due to annealing at temperatures about 773 K, which is accompanied by enhancement in the coercivity value. In addition, 360° domain wall superimposed on a monodomain like background has been observed in the pristine multilayer, which changes into a multidomain upon annealing at 873 K.  相似文献   

16.
Magnetization reversal in a periodic magnetic field is studied on an ultrathin, ultrasoft ferromagnetic Pt/Co(0.5 nm)/Pt trilayer exhibiting weak random domain wall (DW) pinning. The DW motion is imaged by polar magneto-optic Kerr effect microscopy and monitored by superconducting quantum interference device susceptometry. In close agreement with model predictions, the complex linear ac susceptibility corroborates the dynamic DW modes segmental relaxation, creep, slide, and switching.  相似文献   

17.
“Negative” electric-pulse-induced reversible resistance (EPIR) switching phenomenon was found in In/PCMO/Pt sandwich, in which the high resistance can be written with positive voltage pulses, and the low resistance can be reset using negative voltage pulses (the positive voltage direction is defined as going from the top electrode to the bottom electrode). This is just the opposite from the “positive” EPIR effect in Ag/PCMO/Pt sandwich, in which the high resistance can be written only with negative voltage pulses, and the low resistance can be reset using positive voltage pulses. The I–V hysteresis curves of In/PCMO/Pt and Ag/PCMO/Pt sandwiches also show opposite directions, i.e., counterclockwise and clockwise under a negative voltage region for indium and Ag electrode systems, respectively. C–V characteristics show that the barrier does not exist in Ag/PCMO/Pt sandwich, while In/PCMO/Pt sandwich exhibits an obvious Schottky-like barrier. We suggest that in the negative EPIR behavior in In/PCMO/Pt structure, the resistance states are mainly controlled changing the Schottky-like barrier at the interface with the weak effect of carrier trapping process, while the positive EPIR behavior in Ag/PCMO/Pt sandwich mainly depends on the carrier trapping process at the interface. PACS 72.80.-r; 73.40.-C; 75.70.-i  相似文献   

18.
《Comptes Rendus Physique》2013,14(8):651-666
The motion of elastic interfaces in disordered media is a broad topic relevant to many branches of physics. Field-driven magnetic domain wall motion in ultrathin ferromagnetic Pt/Co/Pt films can be well interpreted within the framework of theories developed to describe elastic interface dynamics in the presence of weak disorder. Indeed, the three theoretically predicted dynamic regimes of creep, depinning, and flow have all been directly evidenced in this model experimental system. We discuss these dynamic regimes and demonstrate how field-driven creep can be controlled not only by temperature and pinning, but also via interactions with magnetic entities located inside or outside the magnetic layer. Consequences of confinement effects in nano-devices are briefly reviewed, as some recent results on domain wall motion driven by an electric current or assisted by an electric field. Finally new theoretical developments and perspectives are discussed.  相似文献   

19.
Coexistence of nonvolatile unipolar and volatile threshold resistive switching is observed in the Pt/LaMnO3 (LMO)/Pt heterostructures. The nonvolatile unipolar memory is achieved by applying a negative bias, while the volatile threshold resistive switching is obtained under a positive bias. Additionally, the pristine low resistance state (LRS) could be switched to high resistance state (HRS) by the positive voltage sweeping, which is attributed to the conduction mechanism of Schottky emission. Subsequently, the insulator-to-metal transition in the LMO film due to formation of ferromagnetic metallic phase domain contributes to the volatile threshold resistive switching. However, the nonvolatile unipolar switching under the negative bias is ascribed to the formation/rupture of oxygen-vacancy conducting filaments. The simultaneously controllable transition between nonvolatile and volatile resistance switching by the polarity of the applied voltage exhibits great significance in the applications of in-memory computing technology.  相似文献   

20.
We analyze the origin of the electrical resistance arising in domain walls of perpendicularly magnetized materials by considering a superposition of anisotropic magnetoresistance and the resistance implied by the magnetization chirality. The domain wall profiles of L1(0)-FePd and L1(0)-FePt are determined by micromagnetic simulations based on which we perform first-principles calculations to quantify electron transport through the core and closure region of the walls. The wall resistance, being twice as high in L1(0)-FePd than in L1(0)-FePt, is found to be clearly dominated in both cases by a high gradient of magnetization rotation, which agrees well with experimental observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号