首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
The finite temperature properties of self-assembled dipole chains of polar molecules in strongly confined pancake traps are investigated. The single-chain vibrations at finite temperature, which become important for long chains in a strongly interacting regime, are found to lower the transition temperature and to shift the chain distribution by less than 10%. We also propose experimental parameters to observe such quantum phase transition.  相似文献   

2.
We consider exciton recombination lasing in heterostructure traps for Bose–Einstein condensation of dipolar excitons. We show that such structures suit well for class D lasers where cavity decay strongly exceeds polarization decay. We evaluate lasing threshold taking into account specific inhomogeneous broadening of the exciton spectral line owing to Bose–Einstein condensation phenomenon under quasi-equilibrium conditions.It is found that narrowing of the exciton momentum distribution just before the condensation onset considerably lowers lasing threshold. At the same time, it is pointed out that a subsequent formation of condensate itself does not help lasing much. We conclude that it is possible to achieve lasing on polariton modes in nowadays experiments aimed on Bose–Einstein condensation of excitons.  相似文献   

3.
The thermodynamics of a quantum system of layers containing perpendicularly oriented dipolar molecules is studied within an oscillator approximation for both bosonic and fermionic species. The system is assumed to be built from chains with one molecule in each layer. We consider the effects of the intralayer repulsion and quantum statistical requirements in systems with more than one chain. Specifically, we consider the case of two chains and solve the problem analytically within the harmonic Hamiltonian approach which is accurate for large dipole moments. The case of three chains is calculated numerically. Our findings indicate that thermodynamic observables, such as the heat capacity, can be used to probe the signatures of the intralayer interaction between chains. This should be relevant for near future experiments on polar molecules with strong dipole moments.  相似文献   

4.
We explore the impact of the short-range interaction on the scattering of ground state polar molecules and study the transition from a weak to strong dipolar scattering over an experimentally reasonable range of energies and electric field values. In the strong dipolar limit, the scattering scales with respect to a dimensionless quantity defined by mass, induced dipole moment, and collision energy. The scaling has implications for all quantum mechanical dipolar scattering. Furthermore the universal scattering regime will readily be achieved with polar molecules at ultracold temperatures.  相似文献   

5.
We study the conditions and features of the polariton mode lasing in traps for the Bose condensation of dipolar excitons. We discuss the spectral linewidth of lasing modes and the effects of spatial and spectral inhomogeneity of the exciton distribution. We study in detail the possibility of the polariton mode lasing in the vicinity of the Bose condensation threshold. We analyze the impact of the inhomogeneous broadening of the exciton line on the stability of stationary lasing. We also propose additional experiments aimed at obtaining more information on the polariton mode lasing in semiconductor structures for the Bose condensation of excitons.  相似文献   

6.
在缺乏特征红外振动的情况下追踪具有四极或八极对称性分子的激发态对称性破缺电荷转移通常是很困难的.本文以一种具有八极对称性的三苯胺衍生物为研究对象,利用飞秒时间分辨瞬态荧光光谱方法获得发光跃迁偶极矩的演化动力学,进而实时表征了其溶剂诱导对称性破缺电荷转移的动力学过程.当该分子处于弱极性甲苯溶液中时,在激发态弛豫过程中其发射偶极矩变化较小;当处于较强极性的四氢呋喃溶液中时,其发射偶极矩在数皮秒内快速减小.在对比单体偶极分子的荧光动力学后,推断八极分子的发光态在强极性溶剂中经历溶剂诱导的结构变化,由激子耦合的八极对称性降低至激发定域的偶极对称性;而在较弱极性的溶剂中,其八极对称性在溶剂化稳定中得以较大程度的保持.  相似文献   

7.
The analysis of the polariton modes in 2D traps based on heterostructures with quantum wells for Bose-Einstein condensation of dipolar excitons is presented. The characteristic equation of such modes is derived with allowance for the polarization relaxation of excitons and radiative losses from the trap. The spectrum and structure of high-quality modes are analytically and numerically studied. It is demonstrated that several modes become unstable at a high enough density of excitons and a long relaxation time of the exciton polarization. In accordance with the estimations, such an instability can be reached in the experiments on the Bose-Einstein condensation of dipolar excitons and can be used to interpret the corresponding coherent emission.  相似文献   

8.
Ultracold polar molecules in multilayered systems have been experimentally realized very recently. While experiments study these systems almost exclusively through their chemical reactivity, the outlook for creating and manipulating exotic few- and many-body physics in dipolar systems is fascinating. Here we concentrate on few-body states in a multilayered setup. We exploit the geometry of the interlayer potential to calculate the two- and three-body chains with one molecule in each layer. The focus is on dipoles that are aligned at some angle with respect to the layer planes by means of an external electric field. The binding energy and the spatial structure of the bound states are studied in several different ways using analytical approaches. The results are compared to stochastic variational calculations and very good agreement is found. We conclude that approximations based on harmonic oscillator potentials are accurate even for tilted dipoles when the geometry of the potential landscape is taken into account.  相似文献   

9.
We study the realization of lattice models, where cold atoms and molecules move as extra particles in a dipolar crystal of trapped polar molecules. The crystal is a self-assembled floating mesoscopic lattice structure with quantum dynamics given by phonons. We show that within an experimentally accessible parameter regime extended Hubbard models with tunable long-range phonon-mediated interactions describe the effective dynamics of dressed particles.  相似文献   

10.
We study a simple model of the class D laser with allowance for the spectral and spatial inhomogeneity of an active medium, whose polarization relaxation rate is much smaller than the field relaxation rate in a resonator. We consider the cases of one-, two-, and four-mode lasing for which the stationary, pulsed, self-modulation, and quasi-chaotic of laser dynamics are numerically studied. The laser parameters are chosen to correspond to the experiments on the Bose–Einstein condensation of dipolar excitons in semiconductor traps with quantum wells, which open up a possibility for creating class D lasers for the first time.  相似文献   

11.
We consider cold polar molecules confined in a helical optical lattice similar to those used in holographic microfabrication. An external electric field polarizes molecules along the axis of the helix. The large-distance intermolecular dipolar interaction is attractive but the short-scale interaction is repulsive due to geometric constraints and thus prevents collapse. The interaction strength depends on the electric field. We show that a zero-temperature second-order liquid-gas transition occurs at a critical field. It can be observed under experimentally accessible conditions.  相似文献   

12.
We discuss the possibility of trapping polar molecules in the standing-wave electromagnetic field of a microwave resonant cavity. Such a trap has several novel features that make it very attractive for the development of ultracold molecule sources. Using commonly available technologies, microwave traps can be built with large depth (up to several Kelvin) and acceptance volume (up to several cm3), suitable for efficient loading with currently available sources of cold polar molecules. Unlike most previous traps for molecules, this technology can be used to confine the strong-field seeking absolute ground state of the molecule, in a free-space maximum of the microwave electric field. Such ground state molecules should be immune to inelastic collisional losses. We calculate elastic collision cross-sections for the trapped molecules, due to the electrical polarization of the molecules at the trap center, and find that they are extraordinarily large. Thus, molecules in a microwave trap should be very amenable to sympathetic and/or evaporative cooling. The combination of these properties seems to open a path to producing large samples of polar molecules at temperatures much lower than has been previously possible.Received: 30 June 2004, Published online: 23 November 2004PACS: 33.80.Ps Optical cooling of molecules; trapping - 34.50.-s Scattering of atoms and molecules - 33.80.-b Photon interactions with molecules - 33.55.Be Zeeman and Stark effects  相似文献   

13.
薛鹏  午剑智 《中国物理 B》2012,21(1):10308-010308
The collective excitations of spin states of an ensemble of polar molecules are studied as a candidate for high-fidelity quantum memory. To avoid the collisional properties of the molecules, they are arranged in dipolar crystals under one or two dimensional trapping conditions. We calculate the lifetime of the quantum memory by identifying the dominant decoherence mechanisms and estimating their effects on gate operations when a molecular ensemble qubit is transferred to a microwave cavity.  相似文献   

14.
We consider fermionic polar molecules in a bilayer geometry where they are oriented perpendicularly to the layers, which permits both low inelastic losses and superfluid pairing. The dipole-dipole interaction between molecules of different layers leads to the emergence of interlayer superfluids. The superfluid regimes range from BCS-like fermionic superfluidity with a high Tc to Bose-Einstein (quasi-)condensation of interlayer dimers, thus exhibiting a peculiar BCS-Bose-Einstein condensation crossover. We show that one can cover the entire crossover regime under current experimental conditions.  相似文献   

15.
The Bose condensation of two-dimensional dipolar excitons in quantum wells is numerically studied by the diffusion Monte Carlo simulation method. The correlation, microscopic, thermodynamic, and spectral characteristics are calculated. It is shown that, in structures of coupled quantum wells, in which low-temperature features of exciton luminescence have presently been observed, dipolar excitons form a strongly correlated system.  相似文献   

16.
Variable angle spinning (VAS) experiments can be used to measure long-range dipolar couplings and provide structural information about molecules in oriented media. We present a probe design for this type of experiment using a contactless resonator. In this circuit, RF power is transmitted wirelessly via coaxial capacitive coupling where the coupling efficiency is improved by replacing the ordinary sample coil with a double frequency resonator. Our probe constructed out of this design principle has shown favorable properties at variable angle conditions. Moreover, a switched angle spinning correlation experiment is performed to demonstrate the probe's capability to resolve dipolar couplings in strongly aligned molecules.  相似文献   

17.
In order to determine precise three-dimensional structures of proteins by residual dipolar coupling constants as the major or even exclusive structural constraints, it is essential to use two anisotropic media. In doing so, a reliable and versatile method for estimating the relative orientation of the alignment tensors for the molecules dissolved in different anisotropic media is required. In this communication, we present a new graphical approach for this purpose, which does not require structural information of the target molecules. The correlation map for the two independent data sets of residual dipolar coupling constants, which can be obtained for the molecules in different anisotropic media, strongly depends on the relative orientation of the alignment tensors. We have simulated the correlation maps for all possible combinations of the Euler angles, which transform one alignment tensor to the other, and compared them to the experimental data sets reported for labeled human ubiquitin. This simple graphical method affords a useful starting point for the structural determinations using residual dipolar couplings.  相似文献   

18.
We introduce a microscopic model for particles with dissimilar patches which displays an unconventional "pinched" phase diagram, similar to the one predicted by Tlusty and Safran in the context of dipolar fluids [Science 290, 1328 (2000)]. The model-based on two types of patch interactions, which account, respectively, for chaining and branching of the self-assembled networks-is studied both numerically via Monte Carlo simulations and theoretically via first-order perturbation theory. The dense phase is rich in junctions, while the less-dense phase is rich in chain ends. The model provides a reference system for a deep understanding of the competition between condensation and self-assembly into equilibrium-polymer chains.  相似文献   

19.
The alignment average of polar molecules may be derived from their NMR spectrum, when a strong electric field is applied to the liquid. The Kerr effect can likewise be related to the alignment.In this paper the alignment has been calculated for a rigid-lattice model, previously developed by Van Vleck in the theory of dielectric polarization and extended by others. A series expansion of the alignment for a system of isotropically polarizable dipoles is presented up to second-order terms in the dipolar interaction. The result for a continuum has been compared with those calculated on the basis of the Lorentz and Onsager model of the liquid.An explicit expression for the total electrostatic energy of a binary mixture of polar and non- polar molecules with a symmetric polarizability tensor has also been calculated; it has been obtained from a generalization of a formalism, developed by Mandel and Mazur for the pure polar liquid.  相似文献   

20.
In this study we tested the effect of molecular charge and chirality as well as tissue pH on dipolar coupling interaction in skeletal muscle. These results were demonstrated by double quantum filtered, DQF, 1H NMR spectra acquired on permeable skeletal muscle samples dialyzed against buffered solutions containing three classes of solutes-electrolytes (lactate and Tris), zwitterions (alanine and glycine), and non-electrolytes (dioxane and ethanol)-as a function of pH ranging from 5.0 to 8.5. The results show that charge density on the protein filaments strongly influences dipolar coupling of solutes in muscle whereas charge on the solutes themselves has only a small effect. The frequency splitting of the dipolar coupled peaks for all the molecules tested was strongly affected by muscle pH. Higher pH increased negative charge density on the filaments and resulted in weaker dipolar coupling for anions and zwitterions but stronger coupling for the cation TRIS. Molecular charge per se or chirality did not affect the frequency splitting of the dipolar coupled peaks. The molecules, lactate, ethanol, and alanine, have scalar coupled spins and consequently a double quantum signal in solution. However, spectra acquired from these molecules in muscle showed an additional frequency splitting due to additional dipolar coupling interactions. Due to lack of scalar coupling, spectra from Tris, glycine, and dioxane showed no double quantum signal in solution but did when in muscle. All these observations can be explained by the fact that the net charge on protein filaments dominates the mechanism of dipolar coupling interactions in the highly anisotropic structures in muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号