首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using mode-coupling theory, we derive a constitutive equation for the nonlinear rheology of dense colloidal suspensions under arbitrary time-dependent homogeneous flow. Generalizing previous results for simple shear, this allows the full tensorial structure of the theory to be identified. Macroscopic deformation measures, such as the Cauchy-Green tensors, thereby emerge. So does a direct relation between the stress and the distorted microstructure, illuminating the interplay of slow structural relaxation and arbitrary imposed flow. We present flow curves for steady planar and uniaxial elongation and compare these to simple shear. The resulting nonlinear Trouton ratios point to a tensorially nontrivial dynamic yield condition for colloidal glasses.  相似文献   

2.
The transient behaviour of highly concentrated colloidal liquids and dynamically arrested states (glasses) under time-dependent shear is reviewed. This includes both theoretical and experimental studies and comprises the macroscopic rheological behaviour as well as changes in the structure and dynamics on a microscopic individual-particle level. The microscopic and macroscopic levels of the systems are linked by a comprehensive theoretical framework which is exploited to quantitatively describe these systems while they are subjected to an arbitrary flow history. Within this framework, theoretical predictions are compared to experimental data, which were gathered by rheology and confocal microscopy experiments, and display consistent results. Particular emphasis is given to (i) switch-on of shear flow during which the system can liquify, (ii) switch-off of shear flow which might still leave residual stresses in the system, and (iii) large amplitude oscillatory shearing. The competition between timescales and the dependence on flow history leads to novel features in both the rheological response and the microscopic structure and dynamics.  相似文献   

3.
We study the nonlinear rheological behavior and the microscopic particle dynamics for a colloidal glass, to see whether recently developed models for driven glassy systems can be applied to predict the rheology. Qualitatively, all the findings predicted by the models can be retrieved in our system. Notably, the viscosity decreases strongly with the shear rate. Since it is difficult to predict non-Newtonian viscosities of colloidal systems due to long-ranged hydrodynamic interactions, this shows the promise of this approach for predicting flow behavior. In addition, the measurements allow us to relate the microscopic diffusion dynamics to the macroscopic viscosity of the system.  相似文献   

4.
We consider the nonlinear rheology of dense colloidal suspensions under a time-dependent simple shear flow. Starting from the Smoluchowski equation for interacting Brownian particles advected by shearing (ignoring fluctuations in fluid velocity), we develop a formalism which enables the calculation of time-dependent, far-from-equilibrium averages. Taking shear stress as an example, we derive exactly a generalized Green-Kubo relation and an equation of motion for the transient density correlator, involving a three-time memory function. Mode coupling approximations give a closed constitutive equation yielding the time-dependent stress for arbitrary shear rate history. We solve this equation numerically for the special case of a hard sphere glass subject to step strain.  相似文献   

5.
Pulsatile and oscillatory flows are prevalent in many biological, industrial, and natural systems. Nuclear magnetic resonance (NMR) is a noninvasive method for evaluating fluid mechanics and can be used to obtain spatially resolved velocity maps in simple and complex fluids. A system has been constructed to provide a controllable and predictable oscillatory flow in order to gain a better understanding of the impact of oscillatory flow on Newtonian and non-Newtonian fluids, specifically water, xanthan gum, polyacrylamide and a colloidal suspension. A core shell particle colloidal suspension is used as a model system since measurements can be obtained separately from the suspending fluid (water) and the liquid particle core (hexadecane oil) using NMR. The oscillatory flow system coupled with NMR measures the velocity distributions and dynamics of the fluid undergoing oscillatory flow at specific points in the oscillation cycle.  相似文献   

6.
We show that spin coating, an unsteady, nonuniform shear flow, produces spatiotemporal variation in the crystal order of concentrated colloidal dispersions that is a universal function of the local reduced critical stress and the macroscopic strain. The dependence of the crystal quality of model poly(methyl methacrylate) colloids on radial and axial position, spin speed, and particle size is quantified by confocal microscopy. The coupling of flow-induced crystallization with the centrifugally driven spin coating flow determines local crystal quality without a priori knowledge of the suspension rheology.  相似文献   

7.
Soft materials such as colloidal suspensions, polymer solutions and liquid crystals are constituted by mesoscopic entities held together by weak forces. Their mechanical moduli are several orders of magnitude lower than those of atomic solids. The application of small to moderate stresses to these materials results in the disruption of their microstructures. The resulting flow is non-Newtonian and is characterized by features such as shear rate-dependent viscosities and non-zero normal stresses. This article begins with an introduction to some unusual flow properties displayed by soft matter. Experiments that report a spectrum of novel phenomena exhibited by these materials, such as turbulent drag reduction, elastic turbulence, the formation of shear bands and the existence of rheological chaos, flow-induced birefringence and the unusual rheology of soft glassy materials, are reviewed. The focus then shifts to observations of the liquid-like response of granular media that have been subjected to external forces. The article concludes with examples of the patterns that emerge when certain soft materials are vibrated, or when they are displaced with Newtonian fluids of lower viscosities.  相似文献   

8.
We introduce a rheological model to describe the low-frequency mechanical properties of systems near a fluid/paste transition. We propose a Landau-like expansion for the vicinity of this transition, treating the stress relaxation rate as an order parameter. This leads to a formally simple model that allows us to describe the interplay between aging and non-linearities in the mechanical response of the system. We focus here on systems prepared by fluidification under a strong shear, on which mechanical measurments are performed (oscillatory rheology, stress relaxation, response to a steady shear rate), after a waiting time during which the system evolves on its own. Received 14 June 2000  相似文献   

9.
We show that a distinct class of colloidal crystals, which consist of mutually overlapping particles, has a novel and universal response to steady shear. After a shear-banding regime at low shear rates, strings parallel to the flow direction form as shear grows, which order on a hexagonal crystal in the gradient-vorticity plane. At even higher shear, lateral fluctuations of the strings, enhanced by hydrodynamics, lead to a disordered, fluid state. Our results are based on appropriate simulation techniques that correctly account for hydrodynamics. We also find that shear vastly accelerates the nucleation rates of supercooled fluids into the cluster crystals.  相似文献   

10.
从自组装理论出发, 分析对流自组装2维胶体晶体中空白、条纹区域出现的机理,并在实验上予以验证。通过研究得知, 2维胶体晶体的自组装过程呈现空白、条纹、大面积单层、双层条纹的趋势。从胶体晶体覆盖率的角度出发研究2维胶体晶体的组装参数与质量之间的关系,结果表明:胶体晶体的总覆盖率与基片提拉速度倒数呈线性正比,和粒子体积分数呈反比例函数关系; 受到多种因素的影响,大面积2维胶体晶体总是伴随着一定比例的空白区域和双层区域出现,提拉法所能获得的最大单层覆盖率为95%。  相似文献   

11.
12.
We study the stress response to a steady imposed shear rate in a concentrated suspension of colloidal particles. We show that, in a small range of concentrations and shear rates, stress exhibits giant fluctuations. The amplitude of these fluctuations obeys a power-law behavior, up to the apparition of a new branch of flow, leading to an excess of high amplitude fluctuations which exhibit a well-defined periodicity.  相似文献   

13.
We study the rheology of cornstarch suspensions, a non-Brownian particle system that exhibits shear thickening. From magnetic resonance imaging velocimetry and classical rheology it follows that as a function of the applied stress the suspension is first solid (yield stress), then liquid, and then solid again when it shear thickens. For the onset of thickening we find that the smaller the gap of the shear cell, the lower the shear rate at which thickening occurs. Shear thickening can then be interpreted as the consequence of dilatancy: the system under flow wants to dilate but instead undergoes a jamming transition because it is confined, as confirmed by measurement of the dilation of the suspension as a function of the shear rate.  相似文献   

14.
邱志勇  潘胜  胡林  刘湘  周鲁卫 《物理学报》1997,46(2):314-323
对两类电流变液的介电性质的测量结果表明,强交流电场下电流变液经历介面极化;而且是一种非线性极化.根据海藻酸钠和NaY沸石电流变液的动态剪切应力与强电场介电谱相似这一事实,确定了这两种样品的流变学响应时间下限,它们分别是1ms和0.7ms.还发现NaY电流变液的动态切应力与非线性三次谐波的强度有关;一种高分子半导体电流变液的流变学响应基本不受样品含水量的影响.对上述实验结果进行了解释 关键词:  相似文献   

15.
陈泽锋  熊予莹  韩鹏  陈溢杭  肖化 《中国物理 B》2012,21(7):78103-078103
A self-assembly method, named the angle controlled inclined deposition method, is developed for fabricating well-ordered silica and polystyrene colloidal crystals. A high-quality colloidal crystal with a flat and uniform surface over a large area can be produced rapidly using a minute quantity of suspension and without any additional equipment. By controlling the inclined angle, we can fabricate colloidal crystals with diverse numbers of layers. A colloidal crystal double-heterostructure (composed of three different colloidal photonic crystals) can be rapidly fabricated with this method. Both experimental and simulation results show that the photonic band gap of the double-heterostructure is not a simple superposition of that of the compositional colloidal crystals along the stacking direction.  相似文献   

16.
Using fast confocal microscopy we image the three-dimensional dynamics of particles in a yielded hard-sphere colloidal glass under steady shear. The structural relaxation, observed in regions with uniform shear, is nearly isotropic but is distinctly different from that of quiescent metastable colloidal fluids. The inverse relaxation time tau(alpha)(-1) and diffusion constant D, as functions of the local shear rate gamma*, show marked shear thinning with tau(alpha)(-1) proportional to D proportional to gamma*(0.8) over more than two decades in gamma*. In contrast, the global rheology of the system displays Herschel-Bulkley behavior. We discuss the possible role of large scale shear localization and other mechanisms in generating this difference.  相似文献   

17.
Effects of the electric field on the rheology, electrorheological (ER) effects, are investigated on carbon, barium titanate (BaTiO3) and BaTiO3-coated nickel (BT-Ni) suspensions. Among some electroreological properties, electric field frequency dependence of the induced shear stress (yield stress) observed for three suspensions shows a contrasting behavior. With increase in the electric field frequency, the yield stress decreases above 100 Hz in the carbon suspension, monotonously increases in the BaTiO3 suspension, and is almost constant in the BT-Ni suspension. The difference in the frequency dependence and magnitude of the yield stress is discussed on the basis of the magnitude and relaxation time of the interfacial polarization and the effect of the particle rotation under the shear flow.  相似文献   

18.
We applied the D2Q9 BGK lattice Boltzmann method to study the rheology and structure of the phaseseparating binary fluids under oscillatory shear in the diffusive regime. The method is suitable for simulating systemswhose dynamicsis described by the Navier-Stokes equation and convection-diffusion equation. The shear oscillationinduces different rheological patterns from those under steady shear. With the increasing of the frequency of the shearthe system shows more isotropic behavior, while with the decreasing of the frequency we find more configurations similarto those under steady shear. By decreasing the frequency of the shear, the period of the applied flow becomes thesame order of the relaxation time of the shear velocity profile, which is inversely proportional to the viscosity, and moreanisotropic effects become observable. The structure factor and the velocity profile contribute to the understanding ofthe configurations and the kinetic process. Oscillatory shear induces nonlinear pattern of the horizontal velocity profile.Therefore, configurations are found where lamellar order close to the wall coexists with isotropic domains in the middleof the system. For very slow frequencies, the morphology of the domains is characterized by lamellar order everywherethat resembles what happens in the case of steady shear.  相似文献   

19.
The rheological properties of soft materials often exhibit surprisingly universal linear and nonlinear features. Here we show that these properties can be unified by considering the effect of the strain-rate amplitude on the structural relaxation of the material. We present a new form of oscillatory rheology, strain-rate frequency superposition (SRFS), where the strain-rate amplitude is fixed as the frequency is varied. We show that SRFS can isolate the response due to structural relaxation, even when it occurs at frequencies too low to be accessible with standard techniques.  相似文献   

20.
潘明祥  汪卫华  Alice P.Gast 《物理》2000,29(8):468-475
胶体晶体结晶的物理过程和以胶体晶体为基的三维周期性集团点阵材料的制备是目前实验凝聚态物理的一个热点领域,文章对胶体粒在悬浮液中自组织有序化的物理机制、结构相变与形态的形成和以胶体晶体为基的人造三维周期性点材料作了介绍,无论是从实验上还是理论上看,对胶体体系中发生的自组织有序化的物理机制还有没有给出令人信服的证据和解释。而胶体晶体的制备为具有新异功能的三维周期性集团国材料设计开辟了一条新途径,因而在  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号