共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The photon-assisted shot noise through a quantum dot in the Kondo regime is investigated by applying time-dependent canonical transformation and non-crossing approximation technique. A basic formula for the photon-assisted shot noise is obtained. The rich dependence of the shot noise on the external ac field and temperature is displayed. At low temperature and low frequencies, the differential shot noise exhibits staircase behavior. When the temperature increases, the steps are rounded. At elevated frequencies, the photon-assisted tunneling becomes more obvious. We have also found that the Fano factor is enhanced as the ac frequency is enhanced. 相似文献
4.
5.
Zakka-Bajjani E Ségala J Portier F Roche P Glattli DC Cavanna A Jin Y 《Physical review letters》2007,99(23):236803
We report on direct measurements of the electronic shot noise of a quantum point contact at frequencies nu in the range 4-8 GHz. The very small energy scale used ensures energy independent transmissions of the few transmitted electronic modes and their accurate knowledge. Both the thermal energy and the quantum point contact drain-source voltage V_{ds} are comparable to the photon energy hnu leading to observation of the shot noise suppression when V_{ds}相似文献
6.
Transport through quantum dots in the Kondo regime obeys an effective low-temperature theory in terms of weakly interacting quasiparticles. Despite the weakness of the interaction, we find that the backscattering current and hence the shot noise are dominated by two-quasiparticle scattering. We show that the simultaneous presence of one- and two-quasiparticle scattering results in a universal average charge 5/3e as measured by shot-noise experiments. An experimental verification of our prediction would constitute a most stringent test of the low-energy theory of the Kondo effect. 相似文献
7.
8.
We have measured shot noise in aluminum atomic point contacts containing a small number of conduction channels of known transmissions. In the normal state, we find that the noise power is reduced from its Poissonian value and reaches the partition limit, as calculated from the transmissions. In the superconducting state, the noise reveals the large effective charge associated with each elementary transfer process, in excellent agreement with the predictions of the quantum theory of multiple Andreev reflections. 相似文献
9.
We analyze the frequency-dependent noise of a current through a quantum dot which is coupled to Fermi leads and which is in the Coulomb blockade regime. We show that the asymmetric shot noise, as a function of detection frequency, shows steps and becomes super-Poissonian. This provides experimental access to the quantum fluctuations of the current. We present an exact calculation of the noise for a single dot level and a perturbative evaluation of the noise in Born approximation (sequential tunneling regime but without Markov approximation) for the general case of many levels with charging interaction. 相似文献
10.
We investigate the inelastic transport properties of a quantum dot connected to two leads, based on the combination of a recently developed nonperturbative technique and slave-boson methods involving the approximate mapping of the many-body electron–phonon coupling problem onto a multichannel scattering problem in the Kondo regime. The nonequilibrium Green's function method is adopted in calculations for the inelastic transport processes of electrons in the limit of large Coulomb interaction U→∞ under nonequilibrium conditions. The electron–phonon interactions, which are the main source of the inelasticity, are taken into account. For a single quantum dot, we find that the differential conductance and the shot noise exhibit new structures of peaks and dips which are absent in the case without electron–phonon interactions. 相似文献
11.
Nagaev KE 《Physical review letters》2001,86(14):3112-3115
The shot noise in long diffusive superconductor-normal-metal-superconductor contacts is calculated using the semiclassical approach. At low frequencies and for purely elastic scattering, the voltage dependence of the noise is of the form S(I) = (4Delta+2eV)/3R. The electron-electron scattering suppresses the noise at small voltages resulting in vanishing noise yet infinite dS(I)/dV at V = 0. The distribution function of electrons consists of a series of steps, and the frequency dependence of noise exhibits peculiarities at omega = neV, omega = neV-2Delta, and omega = 2Delta-neV for integer n. 相似文献
12.
《Comptes Rendus Physique》2012,13(1):89-100
We review our experiments on the electronic transport properties of atomic contacts between metallic electrodes, in particular superconducting ones. Despite ignorance of the exact atomic configuration, these ultimate quantum point contacts can be manipulated and well characterized in-situ. They allow performing fundamental tests of the scattering theory of quantum transport. In particular, we discuss the case of the Josephson effect. 相似文献
13.
14.
We investigate the Josephson effect in the graphene nanoribbons of length L smaller than the superconducting coherence length
and an arbitrary width W. We find that in contrast to an ordinary superconducting quantum point contact (SQPC), the critical
supercurrent Ic is not quantized for the nanoribbons with smooth and armchair edges. For a low concentration of the carriers, Ic decreases monotonically with lowering W/L and tends to a constant minimum for a narrow nanoribbon with . The minimum Ic is zero for the smooth edges but for the armchair edges. At higher concentrations of the carriers this monotonic variation acquires a series of peaks. Further
analysis of the current-phase relation and the Josephson coupling strength IcRN in terms of W/L and the concentration of carriers revels significant differences with those of an ordinary SQPC. On the other
hand for a zigzag nanoribbon, we find that, similar to an ordinary SQPC, Ic is quantized but to the half-integer values .
PACS 74.45.+c; 74.50.+r; 73.63.-b; 74.78.Na 相似文献
15.
We study the negative correction to the quantized value 2e(2)/h of the conductance of a quantum point contact due to the backscattering of electrons by acoustic phonons. The correction shows activated temperature dependence and also gives rise to a zero-bias anomaly in conductance. Our results are in qualitative agreement with recent experiments studying the 0.7 feature in the conductance of quantum point contacts. 相似文献
16.
17.
18.
As is well known, fluctuations from a stable stationary nonequilibrium state are described by the linearized inhomogeneous Boltzmann-Langevin equation. The stationary state itself can be described by the nonlinear Boltzmann equation. The ways of its linearization sometimes seem to be not unique. We argue that there is actually a unique way to obtain a linear equation for the fluctuations. As an example, we consider an analytical theory of nonequilibrium shot noise in a diffusive conductor under the space-charge-limited regime. Our approach is compared to that in [11]. We find some difference between the present theory and the approach in [11] and discuss a possible origin of the difference. We believe that it is related to the fundamentals of the theory of fluctuation phenomena in a nonequilibrium electron gas. 相似文献
19.
Experiments on quantum point contacts have highlighted an anomalous conductance plateau around 0.7(2e(2)/h), with features suggestive of the Kondo effect. Here, an Anderson model for transport through a point contact analyzed in the Kondo limit. Hybridization to the band increases abruptly with energy but decreases with valence, so that the background conductance and the Kondo temperature T(K) are dominated by different valence transitions. This accounts for the high residual conductance above T(K). The model explains the observed gate-voltage, temperature, magnetic field, and bias-voltage dependences. A spin-polarized current is predicted even for low magnetic fields. 相似文献
20.