首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present study was undertaken to develop a novel adsorbent for heavy metal ions, and this paper presents the synthesis and characterization of a composite material-silica gel microspheres encapsulated by salicyclic acid functionalized polystyrene (SG-PS-azo-SA) with a core-shell structure. SG-PS-azo-SA was used to investigate the adsorption of Mn(II), Co(II), Ni(II), Fe(III), Hg(II), Zn(II), Cd(II), Cr(VI), Pd(II), Cu(II), Ag(I), and Au(III) from aqueous solutions. The results revealed that SG-PS-azo-SA has better adsorption capacity for Cu(II), Ag(I) and Au(III). Langmuir and Freundlich isotherm models were applied to analyze the experimental data, the best interpretation for the experimental data was given by the Langmuir isotherm equation with the maximum adsorption capacity for Cu(II), Ag(I), and Au(III) at 1.288 mmol g−1, 1.850 mmol g−1 and 1.613 mmol gt-1, respectively. Thus, silica gel encapsulated by salicyclic acid functionalized polystyrene (SG-PS-azo-SA) is favorable and useful for the removal of Cu(II), Ag(I) and Au(III) metal ions.  相似文献   

2.
In this study, the adsorption behavior of natural bentonite with respect to Fe(III) and Ni(II) has been studied in order to consider its application to purity metal finishing wastewaters. During the adsorption process, batch technique is used, and the effects of pH, bentoite amount, temperature, heavy metal concentration, bentonite treatment (calcinations of natural bentonite at 700°C, washing by deionized water to remove the excess salt from bentonite surface), and agitation time on adsorption efficiency are studied. The washed and calcined bentonite samples were labeled by WB and CB, respectively. The pH-dependence of Fe(III) and Ni(II) sorption on the bentonite is significantly more noticeable, indicating a major contribution of surface complexation at the edge sites. It was determined that adsorption of Fe(III) and Ni(II) is well fitted by the second order reaction kinetic. Furthermore, the sorption rate of Fe(III) was higher than the sorption rate of Ni(II). Adsorption of Fe(III) and Ni(II) on NB appeared to follow Langmuir isotherm. In addition, calculated and experimental adsorbed amounts of Fe(III) by the unit NB mass are very higher than Ni(II). The paper also discusses the thermodynamic parameters of the adsorption (the Gibbs free energy, entropy, and enthalpy). Our results demonstrate that the adsorption process was spontaneous and endothermic under natural conditions. Also the adsorption capacity of bentonite for Fe(III) Ni(II) and increases with increased bentonite dose. According to the equilibrium studies, the selectivity sequence can be given as Fe(III) > Ni(II). The adsorbed amount of Fe(III) and Ni(II) on washed bentonite (WB) were very higher compared to NB and CB. Our results show that bentonite could especially WB be considered as a potential adsorbent for Fe(III) and Ni(II) removal from aqueous solutions.  相似文献   

3.
《Analytical letters》2012,45(9):1807-1820
ABSTRACT

5-amino-1,3,4-thiadiazole-2-thiol groups attached on a silica gel surface have been used for adsorption of Cd(II), Co(II), Cu(II), Fe(III), Ni(II), Pb(II) and Zn(II) from aqueous solutions. The adsorption capacities for each metal ion were (in mmol.g?1): Cd(II)= 0.35, Co(II)= 0.10, Cu(II)= 0.15, Fe(III)= 0.20, Hg(II)= 0.46, Ni(II)= 0.16, Pb(II)= 0.13 and Zn(II)= 0.15. The modified silica gel was applied in the preconcentration and quantification of trace level metal ions present in water samples (river, and bog water).  相似文献   

4.
In developing ion-selective polymer-supported reagents, the inherent affinity of a given ligand for a targeted metal ion is found to be affected by auxiliary groups on a scaffold. A series of polyols (ethylene glycol, glycerol, tris(hydroxymethyl)ethane, pentaerythritol, and pentaerythritol triethoxylate) are immobilized onto cross-linked poly(vinylbenzyl chloride), then monophosphorylated. The pentaerythritol, glycerol, and pentaerythritol triethoxylate polymers have the highest affinities for both trivalent and divalent ions. The distribution coefficients of divalent ions (Pb(II), Cd(II), Cu(II), Ni(II), and Zn(II)) correlate with the Misono softness parameter, reflecting a single-site interaction between the metal ion and the phosphoryl oxygen. The distribution coefficients for trivalent ions are in the order Fe(III) < Al(III) < Y(III) less, approximately < La(III) approximately Eu(III) approximately Lu(III). For example, the phosphorylated pentaerythritol polymer has distribution coefficients (also reported as percent complexed) for Fe of 68.4 (75.3%); for Al of 182 (88.5%); and for the rare earth ions Y, Lu, Eu, and La of 374 (94.4%), 1390 (98.4%), 1690 (98.4%), and 708 (96.9%), respectively, from solutions at pH 2.0. The opposite trend (i.e., Fe(III) > Al(III) > (rare earths)) correlates with their hardness, acidity, electron affinity, electronegativity, and formation constants with soluble complexants, including tributyl phosphate. A binding mechanism is proposed wherein the polymer initially has the auxiliary -OH groups hydrogen-bonded to the phosphate ligand; then, binding to the polarizable phosphoryl oxygen with the divalent ions dominates, while the trivalent ions are drawn closer to the phosphoryl oxygen because of their greater charge and, once closer, bind in a multisite interaction with both the phosphate and -OH groups.  相似文献   

5.
The molecular parameters have been calculated to confirm the geometry of 3-methyl-5-oxo-N,1-diphenyl-4,5-dihydro-1-H-pyrazole-4-carbothioamide, HL. The compound is introduced as a new chelating agent for complexation with Cr(III), Fe(III), Co(II), Ni(II) and Cu(II) ions. The isolated chelates were characterized by partial elemental analyses, magnetic moments, spectra (IR, UV–vis, ESR; 1H NMR) and thermal studies. The protonation constant of HL (5.04) and the stepwise stability constants of its Co(II), Cu(II), Cr(III) and Fe(III) complexes were calculated. The ligand coordinates as a monobasic bidentate through hydroxo and thiol groups in all complexes except Cr(III) which acts as a monobasic monodentate through the enolized carbonyl oxygen. Cr(III) and Fe(III) complexes measured normal magnetic moments; Cu(II) and Co(II) measured subnormal while Ni(II) complex is diamagnetic. The data confirm a high spin and low spin octahedral structures for the Fe(III) and Co(II) complexes. The ESR spectrum of the Cu(II) complex support the binuclear structure. The molecular parameters have also been calculated for the Cu(II) and Fe(III) complexes. The thermal decomposition stages of the complexes confirm the MS to be the residual part. Also, the thermodynamic and kinetic parameters were calculated for some decomposition steps.  相似文献   

6.
γ-AlOOH(boehmite)@SiO(2)/Fe(3)O(4) porous magnetic microspheres with high adsorption capacity toward heavy metal ions were found to be useful for the simultaneous and selective electrochemical detection of five metal ions, such as ultratrace zinc(II), cadmium(II), lead(II), copper(II), and mercury(II), in drinking water.  相似文献   

7.
Benzene-1,3,5-tri-carboxylic acid (trimesic acid, TMA) coated on basic alumina has been shown to be an effective adsorbent for Fe(III) and Fe(II) from aqueous solution. A comparative study on the adsorption of Fe(III) and Fe(II) revealed that TMA coated alumina is more selective towards Fe(III) than Fe(II). The maximum adsorptions of Fe(III) and Fe(II) were 26.6 mg/g and 8.4 mg/g, respectively. Fe(III)/Fe(II) adsorption was also compared in some cases with adsorption of Co(II) and Ni(II). Maximum uptakes (Qm) for Co(II) and Ni(II) were found much lower (approximately 1 mg/g) than Fe(III)/Fe(II). pH dependent studies have revealed that Fe(III) was adsorbed efficiently at high acidic condition (pH approximately 1.5) compared to Fe(II), Co(II) and Ni(II), while temperature did not have significant effect on the adsorption processes. Adsorption of Fe(III) and Fe(II) was quite rapid and thermodynamically favourable. Adsorption processes fitted well in Langmuir isotherm model and followed second order rate kinetics in all cases.  相似文献   

8.
A new chelating polymer has been developed using Amberlite XAD-16 anchored with Quercetin. The modified polymer was characterised by Fourier Transform Infra Red (FTIR) spectroscopy, thermogravimetric analysis, surface area analysis and elemental analysis. The Quercetin anchored polymer showed superior binding affinity for Cr(III), Mn(II), Fe(III), Co(II), Ni(II) and Cu(II) with greater than 95% adsorption under optimum conditions. The optimum pH conditions for the quantitative sorption of metal ions were studied. The developed method showed superior extraction qualities with high metal loading capacities of 387, 313, 195, 473, 210 and 320 µmol g?1 for Cu(II), Co(II), Cr(III), Fe(III), Mn(II) and Ni(II), respectively. The rate of metal ion uptake i.e. kinetics studies performed under optimum levels, showed t 1/2 for Co(II), Cu(II), Cr(III), Fe(III), Mn(II) and Ni(II) is 20, 15, 25, 10, 30 and 15 min, respectively. Desorption of metal ions was effective with 10 mL of 2 M HCl prior to analysis using flame atomic absorption spectrophotometer. The chelating polymer was highly ion selective in nature even in the presence of interferent ions, with a high preconcentrating ability for the metal ions of interest. The developed chelating polymer was tested on its utility with synthetic and real samples like river, tap water samples and also with multivitamin tablets. It showed relative standard deviation (R.S.D.) values of/less than 3.0% reflecting on the accuracy and reproducibility of data using the newly developed chelating polymer.  相似文献   

9.
Selective recovery of Fe(III) ions from two-component nitrate solutions of Fe(III) and Ni(II) with synthetic nickel phosphate, natural chalk, and natural tripoli were studied. The mechanism of selective action of chemisorbents was considered, and high efficiency of the materials considered was demonstrated.  相似文献   

10.
Three-component microspheres containing an SiO(2)-coated Fe(3)O(4) magnetite core and a layered double hydroxide (LDH) nanoplatelet shell have been synthesized via an in situ growth method. The resulting Fe(3)O(4)@SiO(2)@NiAl-LDH microspheres display three-dimensional core-shell architecture with flowerlike morphology, large surface area (83 m(2)/g), and uniform mesochannels (4.3 nm). The Ni(2+) cations in the NiAl-LDH shell provide docking sites for histidine and the materials exhibit excellent performance in the separation of a histidine (His)-tagged green fluorescent protein, with a binding capacity as high as 239 μg/mg. The microspheres show highly selective adsorption of the His-tagged protein from Escherichia coli lysate, demonstrating their practical applicability. Moreover, the microspheres possess superparamagnetism and high saturation magnetization (36.8 emu/g), which allows them to be easily separated from solution by means of an external magnetic field and subsequently reused. The high stability and selectivity of the Fe(3)O(4)@SiO(2)@NiAl-LDH microspheres for the His-tagged protein were retained over several separation cycles. Therefore, this work provides a promising approach for the design and synthesis of multifunctional LDH microspheres, which can be used for the practical purification of recombinant proteins, as well as having other potential applications in a variety of biomedical fields including drug delivery and biosensors.  相似文献   

11.
Magnetic non-porous hydrophilic poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) microspheres prepared by the dispersion polymerization and modified with iminodiacetic acid (IDA) were employed for the IMAC separation of phosphopeptides. Fe3+ and Ga3+ ions immobilized on IDA-modified magnetic microspheres were used for the enrichment of phosphopeptides from the proteolytic digests of two model proteins differing in their physico-chemical properties and phosphate group content: porcine pepsin A and bovine α-casein. The optimum conditions for phosphopeptide adsorption and desorption in both cases were investigated and compared. The phosphopeptides separated from the proteolytic digests were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The ability of the prepared Fe3+- and Ga3+-IDA-modified magnetic microspheres to capture phosphopeptides from complex mixtures was shown on an example of bovine milk proteolytic digest.  相似文献   

12.
Phosphate adsorption from single electrolyte (NaH2PO4), phosphate-enriched seawater, and model wastewater was studied using amorphous zirconium hydroxide, ZrO(OH)2(Na2O)0.05 1.5H2O, as an adsorbent. Batch experiments were carried out to investigate the adsorption of phosphate. The effect of pH on phosphate adsorption from seawater showed that the uptake of phosphate increased with an increase in pH up to 6, and then decreased sharply with a further increase in pH of the solution. The equilibrium data of phosphate adsorption were followed with a Freundlich isotherm. The uptake of phosphate at the adsorbent/solution ratio 0.05 g/2 L was 10 and 17 mg-P/g for the phosphate-enriched seawater and the model wastewater, respectively. A much higher adsorptivity toward phosphate ions in seawater was observed on ZrO(OH)2(Na2O)0.05 1.5H(2)O than on other representative adsorbents based on layered double hydroxides of Mg(II)-Al(III), Mg(II)-Fe(III), and Ni(II)-Fe(III). The effective desorption of phosphate ions on ZrO(OH)2(Na2O)0.05 1.5H2O could be achieved using a 0.1 M NaOH solution. The usefulness of experimental data for practical applications in removing phosphate in seawater and wastewater is discussed.  相似文献   

13.
The aim of this study was to investigate the possibility to synthesize new chelating polymeric microspheres owing immobilized biocompatible agent as chelating functional groups and to evaluate their performance in metal ions removal from aqueous solution.The microparticles were synthesized via precipitation polymerization of 4-O-(4-vinylbenzyl)-myo-inositol 1,3,5-orthoformate with ethylene glycol dimethacrylate (EGDMA) and subsequent exhaustive phosphorylation of myo-inositol groups using phosphoric acid.Spherical geometry with monodisperse nature of the polymeric microparticles was confirmed by scanning electron micrographs (SEM) and dimensional analysis. A large surface area of the microspheres provided a maximum interaction of metal ions and the chelating functional groups on the surface. Absorption capacity of the beads for the selected metal ions, i.e., Cu(II), Ni(II), Fe(III), was investigated in detail in aqueous solution at pH 5.0 utilizing UV/Vis spectroscopy. This study showed that the macromolecular systems are very effective in chelating these metal ions and the affinity order of the microbeads toward metal ions is: Fe(III) > Ni(II) > Cu(II).The chelating beads can be easily regenerated by 1.0 M HNO3 with high effectiveness. These features make the synthesized beads a potential candidate for metal ions removal at high capacity.  相似文献   

14.
A new hydrazone ligand, HL, was prepared by the reaction of 7-chloro-4-hydrazinoquinoline with o-hydroxybenzaldehyde. The ligand behaves as monoprotic bidentate. This was accounted for as the ligand contains a phenolic group and its hydrogen atom is reluctant to be replaced by a metal ion. The ligand reacted with Cu(II), Ni(II), Co(II), Fe(III), and UO2(II) ions to yield mononuclear complexes. In the case of Fe(III) ion two complexes, mono- and binuclear complexes, were obtained in the absence and presence of LiOH, respectively. Also, mixed ligand complexes were obtained from the reaction of the metal cations Cu(II), Ni(II) and Fe(III) with the ligand (HL) and 8-hydroxyquinoline (8-OHqu) in the presence of LiOH, in the molar ratio 1:1:1:1. It is clear that 8-OHqu behaves as monoprotic bidentate ligand in such mixed ligand complexes. The ligand, HL, and its metal complexes were characterized by elemental analyses, IR, UV-vis, mass, and 1H NMR spectra, as well as magnetic moment, conductance measurements, and thermal analyses. All complexes have octahedral configurations except Cu(II) complex which has an extra square-planar geometry, while Ni(II) mixed complex has also formed a tetrahedral configuration and UO2(II) complex which formed a favorable pentagonal biprymidial geometry. Magnetic moment of the binuclear Fe(III) complex is quite low compared to calculated value for two iron ions complex and thus shows antiferromagnetic interactions between the two adjacent ferric ions. The HL and metal complexes were tested against one stain Gram positive bacteria (Staphylococcus aureus), Gram negative bacteria (Escherichia coli), and fungi (Candida albicans). The tested compounds exhibited higher antibacterial acivities.  相似文献   

15.
New metal-Schiff-base coordination polymer films were prepared using multiple sequential adsorption of metal ions and salen-based ligand molecules. As the ligands, bis-bidentate 5,5'-methylene-bis(N-methylsalicylidenamine) (MBSA), tetra-bidentate N,N',N' ',N' '-tetrasalicylidene-polyamidoamine (TSPA), and multi-bidentate poly(N-salicylidenevinylamine) (PSVA) were used. The metal ions were Cu(II), Zn(II), Fe(II), Fe(III), and Ce(IV). The resulting films are deeply colored due to the formation of coordinative bonds between the metal ions and the salen groups. Our study indicates that film formation becomes progressively easier, if the number of salen groups per ligand molecule increases. While Cu(II), Ni(II), Fe, and Ce(IV) are well suited for complex formation, Zn(II) is less suited. Possible structures of the polymers are discussed. Cyclic voltammetric studies of the films are also presented.  相似文献   

16.
Yun J  Choi H 《Talanta》2000,52(5):893-902
1-Nitroso-2-naphthol, an excellent color-forming chelating agent, combines to Fe(III), Co(II), Ni(II), Cu(II) and so on to form slightly soluble complexes in aqueous solution. To determine these metal ions, a tedious and time consuming separation technique, such as liquid-liquid extraction, has often been performed. However, these metal-1-nitroso-2-naphthol complexes could be determined conveniently by ultraviolet-visible (UV-Vis) spectrophotometry in Tween 80 micellar medium that has polyoxyethylene groups. After conditions such as pH, the amount of 1-nitroso-2-naphthol and the stability were adjusted to their optimum values, the sensitivities of the metal ions in Tween 80 medium and in chloroform were compared. It was shown that the sensitivities of Fe(III) and Co(II) in Tween 80 medium were higher than in chloroform, but that of Cu(II) was lower. The interfering effects among analytes ions, Fe(III), Co(II), Ni(II) and Cu(II) were more serious than by other ions, but the interfering effects could be removed by adjusting pH or adding the masking agents such as NH(3) or oxalate. Detection limits of Fe(III), Co(II), Ni(II), and Cu(II) were 0.024, 0.016, 0.039 and 0.023 mug ml(-1), respectively, and the correlation coefficients of these calibration curves were above 0.996. Recovery yields of the metal ions in the mixed standard solution ranged from 96 to 103%, and their coefficients of variation were low ranging between 0.94 and 1.75%. Cu(II) in brass sample and the amount of Fe(III) in steel sample were also determined. This proposed technique is simple, convenient and speedy.  相似文献   

17.
以5-氨基水杨酸(ASA)为胺化试剂, 使氯甲基化的交联聚苯乙烯(CMCPS)微球表面的苄氯基团发生亲核取代反应, 制得了水杨酸型螯合树脂ASA-CPS. 研究了该螯合树脂对金属离子的螯合吸附行为, 探讨了其吸附热力学与吸附机理, 考察了介质pH值对树脂螯合吸附性能的影响以及树脂对不同金属离子的螯合吸附能力. 实验结果表明, 水杨酸型螯合树脂ASA-CPS 对重金属离子具有强螯合吸附性能, 尤其对Fe3+离子表现出很强的螯合吸附能力, 常温下吸附容量可达21 g/100 g. 吸附过程属熵驱动的化学吸附过程, 升高温度, 吸附容量增高; 在可抑制金属离子水解的pH范围内, 介质的pH值越高, 螯合吸附能力越强; 对于性质不同的金属离子, ASA-CPS的吸附性能是有差别的, 吸附容量的顺序为Fe3+>Ni2+>Cu2+>Zn2+.  相似文献   

18.
The complex-forming properties of a silica gel-polyaniline composite with 8-hydroxyquinoline covalently immobilized by the Mannich reaction with respect to Pb(II), Cd(II), Cu(II), Ni(II), Co(II), Al(III), Fe(III), and Mo(VI) ions were studied. The resulting adsorbent had a high sorption capacity and satisfactory kinetic characteristics, which allowed us to use it for the separation or preconcentration of transition metal ions. Data on the composition and structure of the test metal complexes with 8-hydroxyquinoline immobilized on the composite surface were obtained from an analysis of electronic diffuse reflectance spectra and corresponding adsorption isotherms.  相似文献   

19.
Reaction of the complex [Ni(rac-CTH)](2+) (rac-CTH = rac-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane) with [Fe(CN)(6)](3-) leads to a novel cyano-bridged Ni(3)Fe(2) complex, [[Ni(rac-CTH)](3)[Fe(CN)(6)](2)](4). The structure consists of an alternating arrangement of [Fe(CN)(6)Ni(rac-CTH)](2) squares and trans-planar [Ni(rac-CTH)](2+) units bridged by cyanide groups to give a neutral 1D chain running along the a axis. Magnetic measurements reveal the occurrence of ferromagnetic coupling between Fe(III) and Ni(II) ions and 3D magnetic ordering at 3 K due to interchain interactions. Canting of the moments is inferred from the low value of the magnetization of the saturation below T(c).  相似文献   

20.

Heterobi- and tri-nuclear complexes [LMM'Cl] and [(LM) 2 M'](M=Ni or Cu and M'=Mn, Fe or Co) have been synthesised. The heteronuclear complexes were prepared by stepwise reactions using two mononuclear Ni(II) and Cu(II) complexes of the general formula [HLM]·1/2H 2 O, as ligands towards the metal ions, Mn(II), Fe(III) and Co(II). The asymmetrical pentadentate (N 2 O 3 ) Schiff-base ligands used were prepared by condensing acetoacetylphenol and ethylenediamine, molar ratio 1 1, to yield a half-unit compound which was further condensed with either salicylaldehyde or naphthaldehyde to yield the ligands H 3 L 1 and H 3 L 2 which possess two dissimilar coordination sites, an inner four-coordinate N 2 O 2 donor set and an outer three-coordinated O 2 O set. 1 H NMR and IR spectra indicate that the Ni(II) and Cu(II) ions are bonded to the inner N 2 O 2 sites of the ligands leaving their outer O 2 O sites vacant for further coordination. Different types of products were obtained according to the type of metal ion. These products differ in stoichiometry according to the type of ligand in the parent compound. Electronic spectra and magnetic moments indicate that the structures of the parent Ni(II) and Cu(II) complexes are square-planar while the geometry around Fe(III), Mn(II) and Co(II) in their products are octahedral as elucidated from IR, UV-visible, ESR, 1 H NMR, mass spectrometry and magnetic moments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号