首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We present a general control-theoretic framework for constructing and analyzing random decoupling schemes, applicable to quantum dynamical control of arbitrary finite-dimensional composite systems. The basic idea is to design the control propagator according to a random rather than deterministic path on a group. We characterize the performance of random decoupling protocols, and identify control scenarios where they can significantly weaken time scale requirements as compared to cyclic counterparts. Implications for reliable quantum computation are discussed.  相似文献   

2.
A dynamical decoupling method is presented which is based on embedding a deterministic decoupling scheme into a stochastic one. This way it is possible to combine the advantages of both methods and to increase the suppression of undesired perturbations of quantum systems significantly even for long interaction times. As a first application the stabilization of a quantum memory is discussed which is perturbed by one- and two-qubit interactions.  相似文献   

3.
Nonadiabatic geometric quantum computation protected by dynamical decoupling combines the robustness of nonadiabatic geometric gates and the decoherence-resilience feature of dynamical decoupling. Solid-state systems provide an appealing candidate for the realization of nonadiabatic geometric quantum computation protected dynamical decoupling since the solid-state qubits are easily embedded in electronic circuits and scaled up to large registers. In this paper, we put forward a scheme of nonadiabatic geometric quantum computation protected by dynamical decoupling via the XXZ Hamiltonian, which not only combines the merits of nonadiabatic geometric gates and dynamical decoupling but also can be realized in a number of solid-state systems, such as superconducting circuits and quantum dots.  相似文献   

4.
Realizing the theoretical promise of quantum computers will require overcoming decoherence. Here we demonstrate numerically that high fidelity quantum gates are possible within a framework of quantum dynamical decoupling. Orders of magnitude improvement in the fidelities of a universal set of quantum gates, relative to unprotected evolution, is achieved over a broad range of system-environment coupling strengths, using recursively constructed (concatenated) dynamical decoupling pulse sequences.  相似文献   

5.
Two possible applications of random decoupling are discussed. Whereas so far decoupling methods have been considered merely for quantum memories, here it is demonstrated that random decoupling is also a convenient tool for stabilizing quantum algorithms. Furthermore, a decoupling scheme is presented which involves a random decoupling method compatible with detected-jump error correcting quantum codes. With this combined error correcting strategy it is possible to stabilize quantum information against both spontaneous decay and static imperfections of a qubit-based quantum information processor in an efficient way.  相似文献   

6.
Dynamical decoupling pulse sequences have been used to extend coherence times in quantum systems ever since the discovery of the spin-echo effect. Here we introduce a method of recursively concatenated dynamical decoupling pulses, designed to overcome both decoherence and operational errors. This is important for coherent control of quantum systems such as quantum computers. For bounded-strength, non-Markovian environments, such as for the spin-bath that arises in electron- and nuclear-spin based solid-state quantum computer proposals, we show that it is strictly advantageous to use concatenated pulses, as opposed to standard periodic dynamical decoupling pulse sequences. Namely, the concatenated scheme is both fault tolerant and superpolynomially more efficient, at equal cost. We derive a condition on the pulse noise level below which concatenation is guaranteed to reduce decoherence.  相似文献   

7.
宋汉冲  龚黎华  周南润 《物理学报》2012,61(15):154206-154206
基于量子远程通信的原理, 本文借助双模压缩真空态和相干态, 提出一种连续变量量子确定性密钥分配协议. 在利用零差探测法的情况下协议的传输效率达到了100%. 从信息论的角度分析了协议的安全性, 结果表明该协议可以安全传送预先确定的密钥. 在密钥管理中, 量子确定性密钥分配协议具有量子随机性密钥分配协议不可替代的重要地位和作用. 与离散变量量子确定性密钥分配协议相比, 该协议分发密钥的速率和效率更高, 又协议中用到的连续变量量子态易于产生和操控、适于远距离传输, 因此该协议更具有实际意义.  相似文献   

8.
9.
刘艳红  吴量  闫智辉  贾晓军  彭堃墀 《物理学报》2019,68(3):34202-034202
量子纠缠是一种重要的量子资源,在多个空间分离的量子存储器间建立确定性的量子纠缠,然后在用户控制的时刻将所存储的量子纠缠转移到量子信道中进行信息的分发和传送,这对于实现量子信息网络是至关重要的.本文介绍了用光学参量放大器制备与铷原子D1吸收线对应的非经典光场,而且在三个空间分离的原子系综中确定性量子纠缠的产生、存储和转移.利用电磁感应透明光和原子相互作用的原理,将制备的多组分光场纠缠态模式映射到三个远距离的原子系综以建立原子自旋波之间的纠缠.然后,存储在原子系综中的纠缠态通过三个量子通道,纠缠态的量子噪声被转移到三束空间分离的正交纠缠光场.三束释放的光场间纠缠的存在验证了该系统具有保持多组分纠缠的能力.这个方案实现了三个量子节点间的纠缠,并且可以直接扩展到具有更多节点的量子网络,为未来实现大型量子网络通信奠定了基础.  相似文献   

10.
11.

We investigate the dynamics of non-classical correlations(entanglement and quantum discord) of the system consisting of two non-interacting superconducting qubits coupling with a common data bus, where the system is driven by the dynamical decoupling pulses. It is found that the non-classical correlations between two superconducting qubits can be increased by appling a train of dynamical decoupling pulses. Furthermore, we also explore the influence of the dynamical decoupling pulses on the information flowing between superconducting qubits and data bus by making use of the trace distance. It is shown that the dynamical decoupling pulses can protect quantum information of two superconducting qubits and force information to flow back to the superconducting qubits from the data bus.

  相似文献   

12.
By using 2-photon 4-qubit cluster states we demonstrate deterministic one-way quantum computation in a single qubit rotation algorithm. In this operation feed-forward measurements are automatically implemented by properly choosing the measurement basis of the qubits, while Pauli error corrections are realized by using two fast driven Pockels cells. We realized also a C-NOT gate for equatorial qubits and a C-PHASE gate for a generic target qubit. Our results demonstrate that 2-photon cluster states can be used for rapid and efficient deterministic one-way quantum computing.  相似文献   

13.
Recently, deterministic joint remote state preparation (JRSP) schemes have been proposed to achieve 100% success probability. In this paper, we propose a new version of deterministic JRSP scheme of an arbitrary two-qubit state by using the six-qubit cluster state as shared quantum resource. Compared with previous schemes, our scheme has high efficiency since less quantum resource is required, some additional unitary operations and measurements are unnecessary. We point out that the existing two types of deterministic JRSP schemes based on GHZ states and EPR pairs are equivalent.  相似文献   

14.
We consider the scenario of deterministic classical information transmission between multiple senders and a single receiver, when they a priori share a multipartite quantum state – an attempt towards building a deterministic dense coding network. Specifically, we prove that in the case of two or three senders and a single receiver, generalized Greenberger–Horne–Zeilinger (gGHZ) states are not beneficial for sending classical information deterministically beyond the classical limit, except when the shared state is the GHZ state itself. On the other hand, three- and four-qubit generalized W (gW) states with specific parameters as well as the four-qubit Dicke states can provide a quantum advantage of sending the information in deterministic dense coding. Interestingly however, numerical simulations in the three-qubit scenario reveal that the percentage of states from the GHZ-class that are deterministic dense codeable is higher than that of states from the W-class.  相似文献   

15.
Fei Liu 《理论物理通讯》2021,73(12):125602
From the perspective of Markovian piecewise deterministic processes (PDPs), we investigate the derivation of a kinetic uncertainty relation (KUR), which was originally proposed in Markovian open quantum systems. First, stationary distributions of classical PDPs are explicitly constructed. Then, a tilting method is used to derive a rate functional of large deviations. Finally, based on an improved approximation scheme, we recover the KUR. These classical results are directly extended to the open quantum systems. We use a driven two-level quantum system to exemplify the quantum results.  相似文献   

16.
Quantum machines     
We discuss quantum information processing machines. We start with single purpose machines that either redistribute quantum information or identify quantum states. We then move on to machines that can perform a number of functions, with the function they perform being determined by a program, which is itself a quantum state. Examples of both deterministic and probabilistic programmable machines are given, and we conclude with a discussion of the utility of quantum programs.  相似文献   

17.
In this paper, we study the effect of cooperative atomic interactions, cavity losses, and pump fluctuations on quantum phase properties of the field in a one-photon micromaser. We consider, initial coherent state of the radiation field and atoms initially in the excited and coherent superposition of their atomic states, respectively. We find that quantum phase properties of the field in a micromaser are highly sensitive to two-atom events and cavity losses. Both contribute to the randomization of the well-defined phase structure associated with the initial coherent state. However, the approach towards the randomization is quite different in the two cases. We also find that the fluctuations, associated with the random injection of the atoms, affect the phase structure of the coherent state.  相似文献   

18.
In this review article, we review the recent development of quantum secure direct communication (QSDC) and deterministic secure quantum communication (DSQC) which both are used to transmit secret message, including the criteria for QSDC, some interesting QSDC protocols, the DSQC protocols and QSDC network, etc. The difference between these two branches of quantum communication is that DSQC requires the two parties exchange at least one bit of classical information for reading out the message in each qubit, and QSDC does not. They are attractive because they are deterministic, in particular, the QSDC protocol is fully quantum mechanical. With sophisticated quantum technology in the future, the QSDC may become more and more popular. For ensuring the safety of QSDC with single photons and quantum information sharing of single qubit in a noisy channel, a quantum privacy amplification protocol has been proposed. It involves very simple CHC operations and reduces the information leakage to a negligible small level. Moreover, with the one-party quantum error correction, a relation has been established between classical linear codes and quantum one-party codes, hence it is convenient to transfer many good classical error correction codes to the quantum world. The one-party quantum error correction codes are especially designed for quantum dense coding and related QSDC protocols based on dense coding.   相似文献   

19.
Quantum computers hold the promise of solving certain computational tasks much more efficiently than classical computers. We review recent experimental advances towards a quantum computer with trapped ions. In particular, various implementations of qubits, quantum gates and some key experiments are discussed. Furthermore, we review some implementations of quantum algorithms such as a deterministic teleportation of quantum information and an error correction scheme.  相似文献   

20.
We investigate the dynamics of quantum correlation between two noninteracting qubits each inserted in its own finite-temperature environment with 1/f1/f spectral density. It is found that the phenomenon of sudden transition between classical and quantum decoherence exists in the system when two qubits are initially prepared in X-type quantum states, and the transition time depends on the initial-state of two qubits, the qubit–environment coupling constant and the temperature of the environment. Furthermore, we explore the influence of dynamical decoupling pulses on the transition time and show that it can be prolonged by applying the dynamical decoupling pulses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号