首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
李嘉明  唐鹏  王佳见  黄涛  林峰  方哲宇  朱星 《物理学报》2015,64(19):194201-194201
研究光在微纳结构中的分布与传播, 实现在纳米范围内操纵光子, 对于微型光学芯片的设计有着重要意义. 本文利用聚焦离子束刻蚀方法, 在基底为石英玻璃的150 nm厚金膜上刻制了不同参数的阿基米德螺旋微纳狭缝结构, 通过改变入射光波长、手性、及螺旋结构手性和螺距等方式, 在理论和实验上系统地研究了阿基米德螺旋微纳结构中的表面等离激元聚焦性质. 我们发现, 除了入射激光偏振态、螺旋结构手性之外, 结构螺距与表面等离激元波长的比值也可以用来控制结构表面电场分布, 进而在结构中心形成0阶、1阶乃至更高阶符合隐失贝塞尔函数的涡旋电场. 通过相位分析, 我们对涡旋电场的成因进行了解释. 并利用有限时域差分的模拟方法计算了不同螺距时, 结构中形成的电场及相应空间相位分布. 最后利用扫描近场光学显微镜, 观测结构中不同的光场分布, 在结构中心得到了亚波长的聚焦光斑及符合不同阶贝塞尔函数的涡旋形表面等离激元聚焦环.  相似文献   

2.
We study surface plasmon polaritons excited on two-dimensional three-order dendritic structures. Previous studies show that split ring resonators (SRRs)
can be used to obtain magnetic resonance, thus sustaining surface waves behaving like surface plasmon polaritons (SPPs). In this paper, we obtain detailed results on surface plasmon polaritons of several different grating structures and theoretically prove that this kind of structures can sustain SPPs. Besides, since dendritic structures can be fabricated by double template-assisted electrochemical deposition, it is worth noting that fabrication of SPP-based materials might be much easier.  相似文献   

3.
In this paper, we propose a structure formed by two subwavelength holes fabricated in a metal film to realize directional excitation of surface plasmon polaritons (SPPs). The holes are employed as SPP sources, and the relative phase of SPPs generated at the hole exit end can be adjusted by changing the dielectric material filled in holes. Using the difference in relative phase values of SPP for two holes filled with different dielectric media, the SPPs can interfere constructively along one direction while destructively along the opposite direction. Our theoretical analysis is verified by the three-dimensional finite-difference time-domain method. Moreover, the directional excitation of SPPs in two-hole array structure is also discussed. It is found that the effect of SPPs directional excitation is improved with the increase of the number of two-hole.  相似文献   

4.
Zhen-Long Zhao 《中国物理 B》2022,31(10):107104-107104
Explicit visualization of different components of surface plasmon polaritons (SPPs) propagating at dielectric/metal interfaces is crucial in offering chances for the detailed design and control of the functionalities of plasmonic nanodevices in the future. Here, we reported independent imaging of the vertical and horizontal components of SPPs launched from a rectangular trench in the gold film by a 400-nm laser-assisted near-infrared (NIR) femtosecond laser time-resolved photoemission electron microscopy (TR-PEEM). The experiments demonstrate that distinct imaging of different components of SPPs field can be easily achieved by introducing the 400-nm laser. It can circumvent the risk of sample damage and information loss of excited SPPs field that is generally confronted in the usual NIR laser TR-PEEM scheme. The underlying mechanism for realizing distinct imaging of different components of the SPPs field with two-color PEEM is revealed via measuring the double logarithmic dependence of photoemission yield with the 800-nm and 400-nm pulse powers of different polarizations. Moreover, it is found that the PEEM image quality of the vertical and horizontal components of the SPPs field is nearly independent of the 400-nm pulse polarization. These results pave a way for SPPs-based applications and offer a possible solution for drawing a space—time field of SPPs in three dimensions.  相似文献   

5.
Surface plasmons at the metal–dielectric interface have emerged as an important candidate to propagate and localize light at subwavelength scales. By tailoring the geometry and arrangement of metallic nanoarchitectures, propagating and localized surface plasmons can be obtained. In this brief perspective, we discuss: (1) how surface plasmon polaritons (SPPs) and localized surface plasmons (LSPs) can be optically excited in metallic nanoarchitectures by employing a variety of optical microscopy methods; (2) how SPPs and LSPs in plasmonic nanowires can be utilized for subwavelength polarization optics and single-molecule surface-enhanced Raman scattering (SERS) on a photonic chip; and (3) how individual plasmonic nanowire can be optically manipulated using optical trapping methods.  相似文献   

6.
张志东  王红艳  张中月  王辉 《中国物理 B》2014,23(1):17801-017801
A unidirectional surface plasmon polaritons(SPPs) generator with greatly enhanced generation efficiency is proposed. The SPPs generator consists of an asymmetric single nanoslit coated with a polyviny alcohol(PVA) film and a silver rectangle block. The generation efficiency of this SPPs generator is investigated using the finite difference time domain method. Due to the presence of the silver rectangle block, the SPPs generation efficiency of the asymmetric single nanoslit with PVA film can be greatly enhanced and the corresponding wavelength with the maximum enhancement factor can be tuned flexibly. The influence of the structural parameters on the generation efficiency is also investigated for the enhanced unidirectional SPPs generator.  相似文献   

7.
介质填充浅槽周期结构表面上的太赫兹表面等离子体激元   总被引:5,自引:5,他引:0  
通过在金属表面刻成浅的垂直凹槽,并在槽内填充不同的介质,对金属表面浅槽周期结构上传播的表面等离子体激元的色散特性与填充介质的关系进行了研究.研究表明通过在周期凹槽内填充介质可以有效降低人工表面等离子体激元的渐近频率,并增强金属表面对电磁场的约束.分析了太赫兹波段金属的吸收损耗对人工表面等离子体激元特性的影响,结果显示基于填充介质的浅槽周期表面结构可以获得长距离传输以及场的亚波长约束.通过对波传输的数值仿真,验证了该表面结构在太赫兹波段良好的导波能力.这种表面结构对太赫兹波段新型集成导波器件的设计具有参考价值.  相似文献   

8.
通过在金属表面刻成浅的垂直凹槽,并在槽内填充不同的介质,对金属表面浅槽周期结构上传播的表面等离子体激元的色散特性与填充介质的关系进行了研究.研究表明通过在周期凹槽内填充介质可以有效降低人工表面等离子体激元的渐近频率,并增强金属表面对电磁场的约束.分析了太赫兹波段金属的吸收损耗对人工表面等离子体激元特性的影响,结果显示基于填充介质的浅槽周期表面结构可以获得长距离传输以及场的亚波长约束.通过对波传输的数值仿真,验证了该表面结构在太赫兹波段良好的导波能力.这种表面结构对太赫兹波段新型集成导波器件的设计具有参考价值.  相似文献   

9.
10.
张永元  罗李娜  张中月 《物理学报》2015,64(9):97303-097303
金属纳米线波导可以将光局域在亚波长尺度内传播, 在纳米光子集成回路方面有着重要的作用. 本文应用有限元方法, 研究了十字结构银纳米线的表面等离极化激元分束特性. 结果表明, 不同模式的表面等离极化激元在十字结构三个分支的输出依赖于端面的几何结构参数. 此外, 研究还发现由于不同模式表面等离极化激元叠加, 在十字结构的分支上出现了周期性电场分布.  相似文献   

11.
In this paper, we investigate numerically the characteristics of surface plasmon polaritons (SPPs) sustained by two-dimensional arrays of metallic pillars protruding out of planar metal surfaces at terahertz (THz) frequencies. Various shapes of the pillars are analyzed, and it is shown that the pillar shape only has weak influence on the dispersion of spoof SPPs. However, the loss of spoof SPPs is closely dependent on the pillar shape. It is also shown that spoof SPPs on textured surfaces with pillars can exhibit much better confinement than those on pierced surfaces with holes.  相似文献   

12.
The use of an attenuated total reflection-coupling mode of prism coated with metal film to excite the interference of the surface plasmon polaritons (SPPs) was proposed for periodic patterning with a resolution of subwavelength scale. High intensity of electric field can be obtained because of the coupling between SPPs and evanescence under a resonance condition, which can reduce exposure time and improve contrast. In this paper, several critical parameters for maskless surface plasmon resonant lithography are described, and the preliminary simulation based on a finite difference timedomain technique agrees well with the theoretical analysis, which demonstrates this scheme and provides the theoretical basis for further experiments.  相似文献   

13.
Fan X  Wang GP 《Optics letters》2006,31(9):1322-1324
Propagation of surface plasmon polaritons (SPPs) through a set of nanoscale metal waveguide arrays (MWGAs) is numerically simulated by using the finite-difference time-domain method. The results reveal that MWGAs show an interesting lens effect on SPPs: SPPs can be strongly focused or defocused by the MWGAs, which we attribute to anomalous coupling of SPPs in MWGAs. Our results imply interesting potential for MWGAs in, for example, nonlinear optics, optical imaging, and nanosensing.  相似文献   

14.
研究了由左手材料、负介电材料、常规介电材料所构成的几种五层对称结构表面等离子体激元的特性.讨论了表面等离子体激元的存在区域、色散关系、以及p和s偏振的表面色散曲线枝,发现表面模的性质强烈依赖于系统的组成材料及其组合方式|层数越多,表面色散曲线枝也越多,处在频率通带的表面极化模态也越多|在五层结构中有p和s两种偏振的表面等离子体激元,在共振时,可导致p波和s波强透射.此外,通过使用衰减全反射方法,探讨了激发并观察表面等离子体激元的可能性.  相似文献   

15.
We demonstrate a physical mechanism for terahertz(THz) generation from surface plasmon polaritons(SPPs). In a structure with a bulk Dirac semimetals(BDSs) film deposited on a dielectric substrate, the energy of the asymmetric SPP mode can be significantly enhanced to cross the light line of the substrate due to the SPP-coupling between the interfaces of the film. Therefore, the SPPs can be immediately transformed into Cherenkov radiation without removing the wavevector mismatch. Additionally, the symmetric SPP mode can also be dramatically lifted to cross the substrate light line when a buffer layer with low permittivity relative to the substrate is introduced. In this case, dual-frequency THz radiation from the two SPP modes can be generated simultaneously. The radiation intensity is significantly enhanced by over two orders due to the field enhancement of the SPPs. The radiation frequency can be tuned in the THz frequency regime by adjusting the beam energy and the chemical potential of the BDSs. Our results could find potential applications in developing room temperature, tunable, coherent, and intense THz radiation sources to cover the entire THz band.  相似文献   

16.
The surface plasmon polaritons (SPPs) in monolayer MoS2 nanostructures are theoretically investigated in detail. Our study shows that the strong SPPs are induced in gigahertz (GHz) frequency range. The frequencies of SPPs are very sensitive on the substrates in the nanostructures. Moreover, the frequency of such SPPs can be controlled by varying the electron densities. Our study can be applied to understand the recent experimental results and is relevant to the applications of plasmonic nano-devices based on MoS2.  相似文献   

17.
For the miniaturization of optical devices, surface plasmon polaritons (SPPs) have been widely utilized due to their outstanding confinement and field‐enhancement characteristics. Analyzing a spectrum of optical signals and splitting certain regions of the spectrum range within a submicrometer‐scale structure are demanded for optical integrated systems. In this paper, a novel type of dichroic surface plasmon launcher that can switch the launching direction according to incident polarization states is demonstrated. Compared to the previously reported plasmonic dichroic splitters, the proposed schemes do not use any asymmetric geometry for directional launching. Hence, the direction of guided SPPs can be interchanged according to the polarization state. Such characteristics will be helpful to design switchable plasmonic devices that can be applied to active plasmonic integrated circuits.  相似文献   

18.
The authors introduce frequency selective beam splitters for surface plasmon polaritons (SPPs) in a metal-insulator-metal (MIM) structure. In the splitters, a part of SPPs keeps propagating straight along the initial direction, while the other part is split into the arm attached at right angle. The splitting ratio can be controlled by varying the width and the electric permittivity of the dielectric layer in the MIM, and by varying the width of the attached arm.  相似文献   

19.
In this paper, we propose a plasmonic coupler which is composed of a nanoslit with a bump. The slit is used to generate surface plasmon polariton (SPP), and the bump is employed as a SPP reflector. It is found that the phase difference between the SPP propagating the opposite direction to the bump and the one reflected by the bump can be periodically adjusted by the distance between the center of slit and the bump. When the constructive interference between the two SPPs occurs, the proposed structure can be regarded as a undirectional plasmonic coupler. Moreover, we also find that the propagation of the interfering SPPs is influenced by the width and length of bump. It is expected that our results may be utilized to control the electromagnetic wave in subwavelength optics.  相似文献   

20.
Renewed and growing interest in the field of surface plasmon polaritons (SPPs) comes from a rapid advance of nanostructuring technologies. In this paper, we will report on the application of two-photon polymerization (2PP) technique for the fabrication of dielectric SPP-structures, which can be used for localization, guiding, and manipulation of SPPs on a subwavelength scale. This technology is based on nonlinear absorption of near-infrared femtosecond laser pulses. Resolutions down to 100 nm (and even better) are already achievable. Characterization of these structures is performed by leakage radiation microscopy. 2PP allows the fabrication of dielectric waveguides, splitters, and couplers directly on metal surfaces. The dielectric structures on metal films are demonstrated to be very efficient for the excitation of SPPs. Using these structures, one can achieve excitation and focusing of the resulting plasmon field. PACS 42.70.Gi; 42.70.Jk; 42.82.Cr; 71.36.+c; 78.20.-e  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号