首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
We determine the phase diagram of hard-core bosons on a triangular lattice with nearest-neighbor repulsion, paying special attention to the stability of the supersolid phase. Similar to the same model on a square lattice we find that for densities rho<1/3 or rho>2/3 a supersolid phase is unstable and the transition between a commensurate solid and the superfluid is of first order. At intermediate fillings 1/3相似文献   

2.
We introduce quantum dimer models on lattices made of corner-sharing triangles. These lattices include the kagome lattice and can be defined in arbitrary geometry. They realize fully disordered and gapped dimer-liquid phase with topological degeneracy and deconfined fractional excitations, as well as solid phases. Using geometrical properties of the lattice, several results are obtained exactly, including the full spectrum of a dimer liquid. These models offer a very natural-and maybe the simplest possible-framework to illustrate general concepts such as fractionalization, topological order, and relation to Z2 gauge theories.  相似文献   

3.
The doped two-dimensional quantum dimer model is investigated by numerical techniques on the square and triangular lattices, with significantly different results. On the square lattice, at small enough doping, there is always a phase separation between an insulating valence-bond solid and a uniform superfluid phase, whereas on the triangular lattice, doping leads directly to a uniform superfluid in a large portion of the resonating-valence-bond (RVB) phase. Under an applied Aharonov-Bohm flux, the superfluid exhibits quantization in terms of half-flux quanta, consistent with Q=2e elementary charge quanta in transport properties.  相似文献   

4.
We realize a two-dimensional kagome lattice for ultracold atoms by overlaying two commensurate triangular optical lattices generated by light at the wavelengths of 532 and 1064 nm. Stabilizing and tuning the relative position of the two lattices, we explore different lattice geometries including a kagome, a one-dimensional stripe, and a decorated triangular lattice. We characterize these geometries using Kapitza-Dirac diffraction and by analyzing the Bloch-state composition of a superfluid released suddenly from the lattice. The Bloch-state analysis also allows us to determine the ground-state distribution within the superlattice unit cell. The lattices implemented in this work offer a near-ideal realization of a paradigmatic model of many-body quantum physics, which can serve as a platform for future studies of geometric frustration.  相似文献   

5.
We consider bosonic dipolar molecules in an optical lattice prepared in a mixture of different rotational states. The 1/R(3) interaction between molecules for this system is produced by exchanging a quantum of angular momentum between two molecules. We show that the Mott states of such systems have a large variety of quantum phases characterized by dipolar orderings including a state with an ordering wave vector that can be changed by tilting the lattice. As the Mott insulating phase is melted, we also describe several exotic superfluid phases that will occur.  相似文献   

6.
We investigate the interplay of classical degeneracy and quantum dynamics in a range of periodic frustrated transverse field Ising systems at zero temperature. We find that such dynamics can lead to unusual ordered phases and phase transitions or to a quantum spin liquid (cooperative paramagnetic) phase as in the triangular and kagome lattice antiferromagnets, respectively. For the latter, we further predict passage to a bond-ordered phase followed by a critical phase as the field is tilted. These systems also provide exact realizations of quantum dimer models introduced in studies of high temperature superconductivity.  相似文献   

7.
In this Letter a conventional method of statistical physics and quantum mechanics is used to calculate the effective area and the expansion energy for trapped Bose gas in a combined optical-magnetic potential. Correction due to the finite number of particles, interatomic interaction and the deepness of the lattice potential are given simultaneously. It is found that the system possess two different phases which are superfluid phase and Mott insulator phase. The critical temperature which separate these two phases is calculated. In the superfluid phase both the effective area and expansion energy is sensitive to the variation of temperature and lattice depth. Mott insulator phase is characterized by vanishing of the condensed fraction and freezing of the effective area at the value which corresponding to BEC transition temperature. So these parameters can serve as a practical thermometer for such system. The expansion energy shows that the lack of expansion in any direction is due to the strong anisotropy of the trapping potential in this direction. The obtained results provide a solid theoretical foundation for the current experiments.  相似文献   

8.
We study hard-core bosons with unfrustrated hopping (t) and nearest neighbor repulsion (U) (spin S=1/2 XXZ model) on the triangular lattice. At half filling, the system undergoes a zero temperature (T) quantum phase transition from a superfluid phase at small U to a supersolid at Uc approximately 4.45 in units of 2t. This supersolid phase breaks the lattice translation symmetry in a characteristic sqrt[3] x square root of 3 pattern, and is remarkably stable--indeed, a smooth extrapolation of our results indicates that the supersolid phase persists for arbitrarily large U/t.  相似文献   

9.
We study bosons loaded in a one-dimensional optical lattice of twofold p-orbital degeneracy at each site. Our numerical simulations find an anti-ferro-orbital p(x)+ip(y), a homogeneous p(x) Mott-insulator phase, and two kinds of superfluid phases distinguished by the orbital order (anti-ferro-orbital and paraorbital). The anti-ferro-orbital order breaks time-reversal symmetry. Experimentally observable evidence is predicted for the phase transition between the two different superfluid phases. We also discover that the quantum noise measurement is able to provide a concrete evidence of time-reversal symmetry breaking in the first Mott phase.  相似文献   

10.
We study a model of hard-core bosons with short-range repulsive interactions at half filling on the kagome lattice. Using quantum Monte Carlo numerics, we find that this model shows a continuous superfluid-insulator quantum phase transition, with exponents z=1 and nu approximately 0.67(5). The insulator, I*, exhibits short-ranged density and bond correlations, topological order, and exponentially decaying spatial vison correlations, all of which point to a Z2 fractionalized phase. We estimate the vison gap in I* from the temperature dependence of the energy. Our results, together with the equivalence between hard-core bosons and S=1/2 spins, provide compelling evidence for a spin-liquid phase in an easy-axis spin-1/2 model with no special conservation laws.  相似文献   

11.
We investigate the ground state of bosons with long-range interactions in the large U limit on a triangular lattice. By mapping this system to the spin-1/2 XXZ model in a magnetic field, we can apply the spin wave theory to this study. We demonstrate how to construct the phase diagrams within the spin wave theory. The phase diagrams are given in an extensive parameter region, where, besides the superfluid phase, diverse solid and supersolid phases are shown to exist in this model. Especially, we find that the phase diagram obtained in this method is consistent with the one obtained previously using numerical techniques in the Ising limit. This confirms the effectiveness of our method. We analyze the stability of all the obtained supersolids and show that they will not be ruined by the quantum fluctuations. We observe that the quantum fluctuations in the stripe supersolid phase could be enhanced by the external field. We also discuss the relevance of our result with the experiment that may be realized with ultracold bosonic polar molecules in a triangular optical lattice.  相似文献   

12.
We derive a continuum theory for the phase transition in a classical dimer model on the cubic lattice, observed in recent Monte Carlo simulations. Our derivation relies on the mapping from a three-dimensional classical problem to a two-dimensional quantum problem, by which the dimer model is related to a model of hard-core bosons on the kagome lattice. The dimer-ordering transition becomes a superfluid-Mott insulator quantum phase transition at fractional filling, described by an SU(2)-invariant continuum theory.  相似文献   

13.
We study finite-temperature phase transitions in a two-dimensional boson Hubbard model with zero-point quantum fluctuations via Monte Carlo simulations of a quantum rotor model and construct the corresponding phase diagram. Compressibility shows a thermally activated gapped behavior in the insulating regime. Finite-size scaling of the superfluid stiffness clearly shows the nature of the Kosterlitz-Thouless transition. The transition temperature T(c) confirms a scaling relation T(c) proportional, rho(0)(x), with x=1.0. Some evidence of anomalous quantum behavior at low temperatures is presented.  相似文献   

14.
We determine the finite-temperature phase diagram of the square lattice hard-core boson Hubbard model with nearest neighbor repulsion using quantum Monte Carlo simulations. This model is equivalent to an anisotropic spin-1/2 XXZ model in a magnetic field. We present the rich phase diagram with a first order transition between a solid and superfluid phase, instead of a previously conjectured supersolid and a tricritical end point to phase separation. Unusual reentrant behavior with ordering upon increasing the temperature is found, similar to the Pomeranchuk effect in 3He.  相似文献   

15.
Atoms trapped in micro-cavities and interacting through the exchange of virtual photons can be modeled as an anisotropic Heisenberg spin-1/2 lattice. We do the quantum field theoretical study of such a system using the Abelian bosonization method followed by the renormalization group analysis. An infinite order Berezinskii-Kosterliz-Thouless transition is replaced by second order XY transition even when an infinitesimal anisotropy in exchange coupling is introduced. We predict a quantum phase transition between the photonic Coulomb blocked induce Mott insulating and photonic superfluid phases due to detuning between the cavity and laser frequency. A large detuning favors the photonic superfluid phase. We also perform the analysis of Jaynes and Cumming Hamiltonian to support the results of quantum field theoretical study.  相似文献   

16.
We predict the robust existence of a novel quantum orbital stripe order in the p-band Bose-Hubbard model of two-dimensional triangular optical lattices with cold bosonic atoms. An orbital angular momentum moment is formed on each site exhibiting a stripe order both in the superfluid and Mott-insulating phases. The stripe order spontaneously breaks time-reversal, lattice translation, and rotation symmetries. In addition, it induces staggered plaquette bond currents in the superfluid phase. Possible signatures of this stripe order in the time of flight experiment are discussed.  相似文献   

17.
We report (17)O NMR measurements in the S=1/2 (Cu(2+)) kagome antiferromagnet Herbertsmithite ZnCu(3)(OH)(6)Cl(2) down to 45 mK in magnetic fields ranging from 2 to 12 T. While Herbertsmithite displays a gapless spin-liquid behavior in zero field, we uncover an instability toward a spin-solid phase at sub-Kelvin temperature induced by an applied magnetic field. The latter phase shows largely suppressed moments ?0.1 μ(B) and gapped excitations. The H-T phase diagram suggests the existence of a quantum critical point at the small but finite magnetic field μ(0)H(c)=1.55(25) T. We discuss this finding in light of the perturbative Dzyaloshinskii-Moriya interaction which was theoretically proposed to sustain a quantum critical regime for the quantum kagome Heisenberg antiferromagnet model.  相似文献   

18.
The physical properties of arbitrary half-integer spins F = N - (1/2) fermionic cold atoms trapped in a one-dimensional optical lattice are investigated by means of a low-energy approach. Two different superfluid phases are found for F > or = (3/2) depending on whether a discrete symmetry is spontaneously broken or not: an unconfined BCS pairing phase and a confined molecular-superfluid instability made of 2N fermions. We propose an experimental distinction between these phases for a gas trapped in an annular geometry. The confined-unconfined transition is shown to belong to the Z(N) generalized Ising universality class. We discuss the possible Mott phases at (1/2) filling.  相似文献   

19.
We study the effect of spin-lattice coupling on triangular and kagome antiferromagnets and find that even moderate couplings can induce complex collinear orders. On coupling classical Heisenberg spins on the triangular lattice to Einstein phonons, a rich variety of phases emerge including the experimentally observed four sublattice state and the five sublattice 1/5th plateau state seen in the magnetoelectric material CuFeO(2). Also, we predict magnetization plateaus at 1/3, 3/7, 1/2, 3/5, and 5/7 at these couplings. Strong spin-lattice couplings induce a striped collinear state, seen in alpha-NaFeO(2) and MnBr(2). On the kagome lattice, moderate spin-lattice couplings induce collinear order, but an extensive degeneracy remains.  相似文献   

20.
In this work, we investigate the system of cold spin-1 atoms in a one dimensional optical lattice in relation with squeezing and entanglement. By using the corresponding Bose-Hubbard Hamiltonian, both superfluid and Mott-insulator phases are studied by using numerical methods in the mean-field approximation. To observe the presence of entanglement, we used a squeezing measure as a criterion for quantum correlations. We further investigate the two interaction regimes, namely ferromagnetic and antiferromagnetic in the case of zero and nonzero but very small angle between the counterpropagating laser beams that form the optical lattice. States in the superfluid phase are calculated analytically by using the perturbation theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号