首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In disordered metals, electron-electron interactions are the origin of a small correction to the conductivity, the "Altshuler-Aronov correction." Here we investigate the Altshuler-Aronov correction deltaG{AA} of a conductor in which the electron motion is ballistic and chaotic. We consider the case of a double quantum dot, which is the simplest example of a ballistic conductor in which deltaG{AA} is nonzero. The fact that the electron motion is ballistic leads to an exponential suppression of deltaG{AA} if the Ehrenfest time is larger than the mean dwell time tau{D} or the inverse temperature h/T.  相似文献   

2.
The microwave response (photovoltage and photoconductance) of a lateral ballistic quantum dot made of a high-mobility two-dimensional electron gas in an AlGaAs/GaAs heterojunction has been studied experimentally in the frequency range of 110–170 GHz. It has been found that the asymmetry of the photovoltage with respect to the sign of the magnetic field has mesoscopic character and depends on both the magnetic field and the microwave power. This indicates the violation of the Onsager reciprocity relations regarding the electron-electron interactions in the mesoscopic photovoltaic effect. A strong increase in the conductance of the quantum dot induced by the microwave radiation and unrelated to heating, as well as the microwave-induced magneto-oscillations, has been discovered.  相似文献   

3.
On a basis of extensive analytical and numerical studies we show that a linear-polarized microwave field creates a stationary magnetization in mesoscopic ballistic quantum dots with two-dimensional electron gas being at a thermal equilibrium. The magnetization is proportional to a number of electrons in a dot and to a microwave power. Microwave fields of moderate strength create in a one dot of few micron size a magnetization which is by few orders of magnitude larger than a magnetization produced by persistent currents. The effect is weakly dependent on temperature and can be observed with existing experimental techniques. The parallels between this effect and ratchets in asymmetric nanostructures are also discussed.  相似文献   

4.
In this paper electron capture on iron group nuclei in crusts of neutron stars in a strong magnetic field is investigated. The results show that the magnetic fields have only a slight effect on electron capture rates in a range of 10$^{8}-10^{13}$G on surfaces of most neutron stars, whereas for some magnetars the magnetic fields range from 10$^{13}$ to 10$^{18}$~G. The electron capture rates of most iron group nuclei are greatly decreased, reduced by even four orders of magnitude due to the strong magnetic field.  相似文献   

5.
We study the ballistic edge-channel transport in quantum wires with a magnetic quantum dot, which is formed by two different magnetic fields B(*) and B0 inside and outside the dot, respectively. We find that the electron states located near the dot and the scattering of edge channels by the dot strongly depend on whether B(*) is parallel or antiparallel to B0. For parallel fields, two-terminal conductance as a function of channel energy is quantized except for resonances, while, for antiparallel fields, it is not quantized and all channels can be completely reflected in some energy ranges. All these features are attributed to the characteristic magnetic confinements caused by nonuniform fields.  相似文献   

6.
The analytical studies show that the application of a small solenoidal magnetic field can drastically change the self-magnetic and self-electric fields of the beam pulse propagating in a background plasma. Theory predicts that when omega_{ce} approximately omega_{pe}beta_{b}, where omega_{ce} is the electron gyrofrequency, omega_{pe} is the electron plasma frequency, and beta_{b} is the ion-beam velocity relative to the speed of light, there is a sizable enhancement of the self-electric and self-magnetic fields due to the dynamo effect. Furthermore, the combined ion-beam-plasma system acts as a paramagnetic medium; i.e., the solenoidal magnetic field inside the beam pulse is enhanced.  相似文献   

7.
Discharge initiation at low pressures and flow rates is investigated in the Madison Helicon Experiment flowing helicon source. At low pressures (below 14-sccm flow rate), a threshold magnetic field exists for discharge initiation which depends on RF power and gas flow rate. Above the threshold magnetic field, RF discharges start only after a significant delay (approximately seconds) and sometimes will not start at all. This threshold magnetic field is interpreted using electron multipactor arguments. A technique is described for initiating discharges at low flow rates and pressures $(lambda_{{rm en}, {rm iz}} ≫ L_{rm system})$ and high magnetic fields (above the threshold value). Without a static magnetic field present, the RF power is turned on, and a lower density $(≪ 10^{11} hbox{cm}^{-3})$ unmagnetized discharge occurs. The magnetic field is then applied, and the discharge transitions to the higher density (up to $10^{13} hbox{cm}^{-3}$) regime. Using this method, magnetized discharges can be started at flow rates as low as 1 sccm ( $1.8 times 10^{-4} hbox{torr}$ at $z = -91 hbox{cm}$ , $1.7 times 10^{-5} hbox{torr}$ at $z = 105 hbox{cm}$) at 500 W in a 1.04-kG magnetic field. This technique can be used to initiate low-pressure helicon discharges for basic plasma science experiments and other applications.   相似文献   

8.
周运清  孔令民  王瑞  张存喜 《物理学报》2011,60(7):77202-077202
利用演化算符的方法,研究了量子点体系中的电流以及自旋流,该体系中量子点和左右磁性电极耦合并且受到微波作用,且两电极之间有直接隧穿,得到了体系电流的解析表达式.发现对于无直接隧穿和零偏压情况,无论对称结构还是非对称结构,电流和自旋流总为零.对于直接隧穿和零偏压情况,对于两边为非对称结构,微波场辐射在量子点上可以导致自旋流而非零的总电流,给出了平行和反平行磁构型下的结果并进行了讨论;对于两边为对称结构结构,平行磁构型下,量子点上加微波场时自旋流和总电流均为零;在反平行磁构型下,量子点上加微波场可以导致自旋流而 关键词: 微波场 直接隧穿 量子点 泵流  相似文献   

9.
The angular correlation of the 133 keV-482 keV-yy-cascade in the decay of Hf181 is strongly attenuated if solid sources of hafniumammoniumhexafluoride are used. The unperturbed correlation was observed however when a single crystal of hafniumammoniumhexafluoride was used whose main axis pointed into the direction of one of the two detectors. This proves that the perturbation is static and that the maximum component of the electric field gradient at the position of the hafnium nucleus coincides with the direction of the main axis of the crystal. The anisotropy of the angular correlation was measured as a function of the direction of the crystal axis. The results agree with the theoretical predicted functions for a strong electric quadrupole interaction. Then we combined the intrinsic electric field with an external magnetic field. The magnetic field direction was chosen parallel to thez-axis of the electric field gradient and perpendicular to the plane of the detectors. The theory for axially symmetric field gradients predicts a maximum of the anisotropy of the angular correlation for a magnetic field strength at which resonance exists between electric and magnetic precession. For a strong electric interaction the maxium anisotropy has half the value of the unperturbed correlation. In our case the electric quadrupole interaction was so strong that we could not reach the resonance even when we applied external magnetic fields up to 48000 gauss. The observed anisotropies were too large however to be fitted by theoretical curves which were calculated under the assumption that the field gradient has axial symmetry. Therefore we developed the theory for non-axially symmetric electric field gradients. Now a fit was possible and gave unique solutions for the strength of the electric hyperfine interaction as well as for the asymmetry coefficient of the electric field gradient tensor. The accuray of these results was not very high but the strength of the electric hyperfine interaction was found to be small enough to make a direct observation of the electric spin rotation by the differential angular correlation method possible. The observed pattern confirmed the non-axially symmetry of the electric field gradient and we derived the following parameters:
$$\omega _{E_0 } = \left( {570 \pm 30} \right)MHz\left( {\omega _{E_0 } = electric interaction frequency = \frac{{6eQ \cdot \left| {V_{zz} } \right|}}{{4I \cdot \left( {2I - 1} \right) \cdot \rlap{--} h}}} \right)$$  相似文献   

10.
Metric-torsion effects on chiral massless fermions are investigated in the realm of the adiabatic amplification of cosmological magnetic fields (CMFs) in a general relativistic framework and in the framework of Einstein–Cartan (EC) bouncing cosmologies. In GR the chiral effect is proportional to the Hubble factor and the solution of the dynamo equation leads to an adiabatic magnetic field, while in Einstein–Cartan bouncing cosmology we have non-adiabatic magnetic fields where the breaking of adiabaticity is given by a torsion term. Using a EWPT magnetic field of the order of \(B_{\text {seed}}\sim {10^{24}}\) G at 5 pc scale, we obtain a CMF in EC of the order of \(10^{-10}\) G, which is still able to seed a galactic dynamo which amplifies this field up to galactic magnetic fields of four orders of magnitude, which is a mild dynamo. In the case of massive chiral fermions it is shown that torsion actually attenuated the convective dynamo term in the dynamo equation obtained from the QED of an electron–positron pair \(e^{-}e^{+}\). Chiral effects on general relativity may lead to strong magnetic fields of the order of \(\sim {10^{18}}\) G at the early universe resulting from pure metric effects. Strong magnetic fields of the order of \(B_{\text {metric}-\text {torsion}}\sim {10^{8}}\) G may be obtained from very strong seed fields. At 1 Mpc scale of the present universe a galactic dynamo seed of the order of \(10^{-19}\) G is found. It is shown in this paper that chiral dynamo effects in the expanded universe can be obtained if one takes into account the speed of the cosmic plasma.  相似文献   

11.
Magnetic properties and magnetic entropy changes in LaFe$_{11.5}$Si$_{1.5}$ have been investigated by partially substituting Pr by La. It is found that La$_{1 - x}$Pr$_{x}$Fe$_{11.5}$Si$_{1.5}$ compounds remain cubic NaZn$_{13}$-type structures even when the Pr content is increased to 0.5, i.e. $x = 0.5$. Substitution of Pr for La leads to a reduction in both the crystal constant and the Curie temperature. A stepwise magnetic behaviour in the isothermal magnetization curves is observed, indicating that the characteristic of the itinerant electron metamagnetic (IEM) transition above $T_{\rm C}$ becomes more prominent with the Pr content increasing. As a result, the magnetic entropy change is remarkably enhanced from 23.0 to 29.4\,J/kg$\cdot$K as the field changes from 0 to 5\,T, with the value of $x$ increasing from 0 to 0.5. It is more attractive that the magnetic entropy changes for all samples are shaped into high plateaus in a wide range of temperature, which is highly favourable for Ericsson-type magnetic refrigeration.  相似文献   

12.
We report mesoscopic dc current generation in an open chaotic quantum dot with ac excitation applied to one of the shape-defining gates. For excitation frequencies large compared to the inverse dwell time of electrons in the dot (i.e., GHz), we find mesoscopic fluctuations of induced current that are fully asymmetric in the applied perpendicular magnetic field, as predicted by recent theory. Conductance, measured simultaneously, is found to be symmetric in field. In the adiabatic (i.e., MHz) regime, in contrast, the induced current is always symmetric in field, suggesting its origin is mesoscopic rectification.  相似文献   

13.
We report magnetotransport measurements in ballistic graphene mesoscopic wires where the charge carrier mean free path is comparable to the wire width W. Magnetoresistance curves show characteristic peak structures where the peak field scales with the ratio of cyclotron radius R_{c} and wire width W as W/R_{c}=0.9±0.1, due to diffusive boundary scattering. The obtained proportionality constant between R_{c} and W differs from that of a classical semiconductor two-dimensional electron system in which W/R_{c}=0.55.  相似文献   

14.
A variational formalism for the calculation of the binding energies of hydrogenic donors in a parabolic diluted magnetic semiconductor quantum dot is discussed. Results are obtained for Cd Mn Te/Cd Mn Te structures as a function of the dot radius in the presence of external magnetic and electric fields applied along the growth axis. The donor binding energies are computed for different field strengths and for different dot radii. While the variation of impurity binding energy with dot radii and electric field are as expected, the polarizability values enhance in a magnetic field. However, for certain values of dot radii and in intense magnetic fields the polarizability variation is anomalous. This variation of polarizability is different from non- magnetic quantum well structures. Spin polaronic shifts are estimated using a mean field theory. The results show that the spin polaronic shift increases with magnetic field and decreases as the electric field and dot radius increase.  相似文献   

15.
《中国物理 B》2021,30(7):77501-077501
The magnetism and magnetocaloric effect(MCE) of rare-earth-based tungstate compounds R_3 BWO_9(R=Gd,Dy,Ho) have been studied by magnetic susceptibility,isothermal magnetization,and specific heat measurements.No obvious long-range magnetic ordering can be found down to 2 K.The Curie-Weiss fitting and magnetic susceptibilities under different applied fields reveal the existence of weak short-range antiferromagnetic couplings at low temperature in these systems.The calculations of isothermal magnetization exhibit a giant MCE with the maximum changes of magnetic entropy being 54.80 J/kg-K at 2 K for Gd_3 BWO_9,28.5 J/kg-K at 6 K for Dy_3 BWO_9,and 29.76 J/kg-K at 4 K for Ho_3 BWO_9,respectively,under a field change of 0-7 T.Especially for Gd_3 BWO_9,the maximum value of magnetic entropy change(-ΔS_M~(max)) and adiabatic temperature change(-ΔT_(ad)~(max)) are 36.75 J/kg·K and 5.56 K for a low field change of 0-3 T,indicating a promising application for low temperature magnetic refrigeration.  相似文献   

16.
This paper studies dynamics of a modulation-doped GaAs/AlGaAs heterostructure under transverse magnetic fields and microwave radiations. It finds that negative differential conductivity, due to the real-space electron transfer and delayed dielectric relaxation of the interface potential barrier, can lead to complex behaviours when a relatively small magnetic field is applied. Quasiperiodicity, frequency-locking and the routes from period-doubling to chaos are found. Under a large magnetic field, however, two time-independent homogeneous steady states exist; and the longitudinal resistance of the system shows an interesting oscillation with period tuned by the ratio of microwave radiation frequency w to the cyclotron frequency Wc and local minima at ω/ωc = integer + 1/4.  相似文献   

17.
The effects of high-electric fields on oxidation of tungsten single crystals in 6 × 10?4 torr of oxygen at 1200–1500 °K were studied by field emission and transmission electron microscopy. Exposure of field emitters to oxygen in the absence of a field resulted in the build-up of emitter tips. Oxidation under the application of a negative or positive field, on the other hand, involved plane faceting and formation of oxide crystallites. Plane faceting was recognized to occur on the {111} and the {112} regions, showing the facetings of the {111} and the {112} planes into the {110} planes, whereas, crystallite formation seemed to take place selectively on the {100} regions. It was suggested by field emission microscopy that negative fields have an additional effect which causes the growth of an oxide crystal on the (110) plane. Transmission electron microscopy of an emitter oxidized in a negative field actually revealed a tiny oxide crystal with a size of ~ 300 Å grown on the developed (110) plane. The crystal exhibited a triangular shadow image strongly indicating an external pyramid-like form.  相似文献   

18.
We have investigated the low-energy dynamics of the triangular lattice of Skyrmions in a helimagnetic insulator Cu_{2}OSeO_{3} in terms of microwave response. We have observed two elementary excitations of the Skyrmion with different polarization characteristics: the counterclockwise circulating mode at 1?GHz with the magnetic field polarization parallel to the Skyrmion plane and the breathing mode at 1.5?GHz with a perpendicular magnetic field polarization. These modes reflect the topological nature of Skyrmions and may play a central role in the Skyrmion dynamics.  相似文献   

19.
A miniature Hall-sensor array was used to detect magnetic induction locally in the vortex states of the beta-pyrochlore superconductor KOs2O6. Below the first-order transition at T{p} approximately 8 K, which is associated with a change in the rattling motion of K ions, the lower critical field and the remanent magnetization both show a distinct decrease, suggesting that the electron-phonon coupling is weakened below the transition. At high magnetic fields, the local induction shows an unexpectedly large jump at T{p} whose sign changes with position inside the sample. Our results demonstrate a novel redistribution of vortices whose energy is reduced abruptly below the first-order transition at T{p}.  相似文献   

20.
徐芳  白洋  艾芬  乔利杰 《中国物理 B》2008,17(12):4652-4655
The magnetic and dielectric properties of Sr-substituted Zn2-Y hexagonal ferrites (Ba2-x SrxZn2Fe12O22, 1.0 〈 x ≤ 1.5) are studied in this paper. Sr substitution will lead to the variation of cation occupation, which influences both the magnetic and electric properties. As Sr content x rises from 1.0 to 1.5, magnetic hysteresis loop gets wider gradually and the permeability drops rapidly due to the transformation from ferrimagnetic to antiferromagnetic phase. Moreover, permittivity rises with increasing Sr content. Under a certain external magnetic field, the phase transition of helical spin structure of Ba0.5Srl.5Zn2Fe12O22 at about 295 K seems to open a possibility for the room-temperature ferroelectricity induced by magnetic field. But its low resistivity prevents the observation of ferroelectric and magnetoelectric properties at room-temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号