首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Within a quantum virial expansion, we investigate theoretically the violation of universal thermodynamics for a strongly interacting unitary Fermi gas trapped in a harmonic potential. The violation is caused by the existence and anisotropy of the trapping potential and a finite-range of the two-body interaction. We calculate the second virial coefficient by solving a two-fermion problem in 3D uniform harmonic traps, as well as in anisotropic traps. In the unitarity limit, the universal value of the trapped second virial coefficient is 1/4. We discuss in detail the non-universal correction to the second virial coefficient and to the equation of state.  相似文献   

2.
We study the thermodynamical properties of an ideal gas of non-Abelian Chern–Simons particles and we compute the second virial coefficient, considering the effect of general soft-core boundary conditions for the two-body wavefunction at zero distance. The behaviour of the second virial coefficient is studied as a function of the Chern–Simons coupling, the isospin quantum number and the hard-core parameters. Expressions for the main thermodynamical quantities at the lower order of the virial expansion are also obtained: we find that at this order the relation between the internal energy and the pressure is the same found (exactly) for 2D Bose and Fermi ideal gases. A discussion of the comparison of obtained findings with available results in literature for systems of hard-core non-Abelian Chern–Simons particles is also supplied.  相似文献   

3.
In this paper, we established an analytical formula for the second virial coefficient (SVC) with Morse potential without using any numerical methods, and the obtained formula is applied to the calculation of the speed of sound of some matter at high temperature. This approach is based on the series expansion formula and special functions, which allows the exact evaluations of any thermodynamic properties of matter using the SVC. As an application, the obtained analytical formula is used for evaluation of the SVC with Morse potential for high‐temperature gas and the plasma region of the intermolecular interactions of neutral atom gases of B, Si, Zn, H2, N2, O2, NO, CO, He, Ne, Ar, Kr , and Xe . Based on the obtained formula of SVC, the speed of sound for gases of N2, Ar , and Zn are also determined analytically. A specific maximum temperature is chosen for every gas to ensure that there are still neutral atoms in the gas, and low temperatures are avoided due to quantum effects. The results are compared with numerical data and another analytical data from the literature. The new analytical solution is shown to be in good agreement with the compared data and is verified to supply proper thermodynamic data.  相似文献   

4.
An algebraic model based on Lie-algebraic techniques is applied to vibrational molecular thermodynamics. The model uses the isomorphism between the SU(2) algebra and the one-dimensional Morse oscillator. A vibrational high-temperature partition function and the related thermodynamic properties are derived in terms of the parameters of the model. The anharmonic vibrations are described as anharmonic q-bosons using a first-order expansion of a quantum deformation. It is shown, that this quantum deformation is related to the shape of the Morse potential.  相似文献   

5.
From the unified statistical thermodynamics of quantum gases, the virial coefficients of ideal Bose and Fermi gases, trapped under generic power law potential are derived systematically. From the general result of virial coefficients, one can produce the known results in d=3 and d=2. But more importantly we found that, the virial coefficients of Bose and Fermi gases become identical (except the second virial coefficient, where the sign is different) when the gases are trapped under harmonic potential in d=1. This result suggests the equivalence between Bose and Fermi gases established in d=1 (J. Stat. Phys. DOI 10.1007/s10955-015-1344-4). Also, it is found that the virial coefficients of two-dimensional free Bose (Fermi) gas are equal to the virial coefficients of one-dimensional harmonically trapped Bose (Fermi) gas.  相似文献   

6.
J. Ram  Y. Singh 《Molecular physics》2013,111(3):539-547
The first quantum correction to the virial coefficients of the equation of state of a fluid is derived in the presence of a weak three-body potential ?(i, j, k). Results for the third and fourth virial coefficients are given. Representing the potential energy of interaction of a pair and a triplet, by the Lennard-Jones (12-6) model and the triple dipole dispersion potential model of Axilrod and Teller, the first quantum correction to the third virial coefficient is calculated for many values of T*. The theoretical result is compared with the experimental data of helium.  相似文献   

7.
A result from Dodd and Gibbs (J. Math. Phys., 15, 41 (1974)) for the second virial coefficient of particles in one dimension, subject to delta-function interactions, has been obtained by direct integration of the wave functions. It is shown that this result can be obtained from a phase shift formalism, if one also includes the contribution of oscillating terms. The result is important in work to follow, for the third virial coefficient, for which a similar formalism is being developed. We examine a number of fine points in the quantum mechanical formalisms.  相似文献   

8.
Second virial coefficients for the density dependence of a number of electric properties are calculated for neon gas. Employing an accurate CCSD(T) potential for the Ne2 van der Waals dimer and interaction-induced electric dipole polarizabilities and hyperpolarizabilities obtained from CCSD response theory, we evaluated the dielectric, refractivity, Kerr and ESHG second virial coefficients using both a semiclassical and a quantum statistical approach. The results cover a wide range of temperatures and are expected to be more reliable than the available experimental and empirical data. Quantum effects are found to be important only for temperatures below 100 K. The frequency-dependence of the refractivity virial coefficient is found to be small, but not negligible. For frequencies in the visible region it accounts for a few percent of the final results. For the ESHG virial coefficient of neon, frequency dependence is found to be very important, accounting for 20–25% of the second virial coefficient at the typical frequencies employed in experiments.  相似文献   

9.
李鹤龄 《大学物理》2006,25(4):30-32
求出了任意维经典非理想气体的硬心势、方阱势和Lennard-Jones势的第二位力系数,并给出了计算更高位力系数的方法与途径.结果表明:对于Lennard-Jones势,只有当维数n<6时,第二位力系数才收敛.  相似文献   

10.
利用量子力学中的密度矩阵算符理论和迭代方法,得到Morse势阱中的光检波系数的解析表达式。并以典型的GaAs/AlGaAs莫尔斯量子阱为例进行数值计算。研究结果表明,较大的光检波系数与系统的非对称性有关,系统的非对称性越大,光检波系数越大。  相似文献   

11.
A common method for the estimation of uncertainties introduced by surface and impurity effects into experimental measurements of virial coefficients is described. The sign and the amplitude of the second virial coefficient response to perturbation caused by adsorption of molecules on the internal surface of the vessel have been determined. It has been shown that the magnitude of the second virial coefficient distortion depends on such competing factors as adsorption-impurity perturbation parameter, mixture composition which has been corrected taking into account this perturbation, and the nature of the impurity expressed in terms of its second virial coefficient and of the solvent-impurity cross second virial coefficient. The character of the Lennard-Jones 12–6 potential parameters perturbation, caused by the adsorption-impurity effects, is determined using second virial coefficient data inversion technique. Numerical estimates are made for nitrogen, helium, argon, xenon, their binary mixtures, and also for krypton-sulphur hexafluoride gaseous mixtures.  相似文献   

12.
We report virial coefficients up to third order in density for molecular nitrogen, investigating 103 temperatures in the range (15 K, 3000 K). All calculations are based on an ab initio-based potential taken from the literature. Path-integral Monte Carlo (PIMC) is applied to account for nuclear quantum effects, and these results are compared to a more approximate but faster semiclassical treatment. Additionally, we examine a PIMC approach that employs semiclassical beads for the path-integral images, but find that it offers marginal advantage. A recently developed orientation sampling algorithm is used in conjunction with Mayer sampling to compute precise virial coefficients. We find that, within the precision of our calculations of the second-order coefficient (B2), semiclassical methods are adequate for temperatures greater than 250 K, and are needed to correct classical behaviour for temperatures as high as 800 K. For the third-order coefficient (B3), the semiclassical methods are adequate above 150 K, and are required up to the highest temperature examined (3000 K) in order to correct the classical treatment within the precision of the calculations. However, three-body contributions to the potential are much more significant than nuclear quantum effects for the evaluation of B3.  相似文献   

13.
Eyube E S  Rawen B O  and Ibrahim N 《中国物理 B》2021,30(7):70301-070301
The Schrödinger equation is solved with general molecular potential via the improved quantization rule. Expression for bound state energy eigenvalues, radial eigenfunctions, mean kinetic energy, and potential energy are obtained in compact form. In modeling the centrifugal term of the effective potential, a Pekeris-like approximation scheme is applied. Also, we use the Hellmann-Feynman theorem to derive the relation for expectation values. Bound state energy eigenvalues, wave functions and meanenergies of Woods-Saxon potential, Morse potential, Möbius squared and Tietz-Hua oscillators are deduced from the general molecular potential. In addition, we use our equations to compute the bound state energy eigenvalues and expectation values for four diatomic molecules viz. H2, CO, HF, and O2. Results obtained are in perfect agreement with the data available from the literature for the potentials and molecules. Studies also show that as the vibrational quantum number increases, the mean kinetic energy for the system in a Tietz-Hua potential increases slowly to a threshold value and then decreases. But in a Morse potential, the mean kinetic energy increases linearly with vibrational quantum number increasing.  相似文献   

14.
A general method of obtaining wavefunctions for empirical diatomic molecular potential functions has been given. Efficacy of the method has been tested by computing Franck-Condon factors for some bands of a new system of SiO using Morse oscillator model and these have been compared with the ones obtained using exact Morse wavefunctions. It is concluded that the method is satisfactory at low quantum numbers.  相似文献   

15.
陈俊  史琳  王楠  毕胜山 《物理学报》2011,60(12):126601-126601
利用线性响应理论对Ar流体输运参数进行了分子动力学模拟,结果发现:导热系数和黏度会随着自相关积分函数积分时间的增加而产生剧烈波动,而扩散系数却相对稳定. 针对积分稳定性这一问题,对导热系数和黏度中的热流密度和应力张量进行了分解分析,发现含分子间作用力项是影响稳定性的最大因素. 从牛顿力学出发对作用力项的影响机理进行了分析,指明减小这种影响的最主要方法是使在体系进行统计输运参数前达到稳定平衡状态,即最小的预平衡步数应该满足使体系达到该状态下熵最大或者能量最低,并尽量减小温度对体系的影响. 同时,还对模拟盒尺寸、统计步长等因素对积分稳定性的影响进行了分析,给出了保持稳定性的建议. 关键词: 分子动力学 输运性质 自相关函数 稳定性  相似文献   

16.
The van-der-Waals version of the second virial coefficient is not far from being exact if the model parameters are appropriately chosen. It is shown how the van-der-Waals resemblance originates from the interplay of thermal averaging and superposition of scattering phase shift contributions. The derivation of the two parameters from the quantum virial coefficient reveals a fermion-boson symmetry in non-ideal quantum gases. Numerical details are worked out for the Helium quantum gases.  相似文献   

17.
Expressions for classical turning points of the molecular oscillator are derived using a generalised first-order potential. Equivalence of the potential is established with results derived from the Morse, Dunham, and RKR potentials wwhen the energy is a quadratic function of the vibrational quantum number.  相似文献   

18.
A modified form of the Uhlenbeck-Beth representation for the second virial coefficient is used, together with the Fredholm theory of two-particle scattering, to obtain an upper bound on the partial wave contribution to the coefficient which holds if the intermolecular potential is sufficiently weak.  相似文献   

19.
Some formulations of the problem of reconstructing the potential of the two-body interaction from the temperature dependence of the second virial coefficient are considered. For three-parameter potential models (Morse and Kihara) the formalism of the Fisher matrix is used to calculate the coefficients of the amplification of the errors in the determination of each of the parameters. For the general case of the nonparametric approach a scheme of formal linearization of the problem is given and conditions for unique solution of it found. The example of the reconstruction of the potential of Maxwellian molecules is given. Some new possibilities are noted for the unique reconstruction on the basis of the temperature dependences of the transport coefficients.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 30–33, June, 1980.  相似文献   

20.
A parameter for evaluating the sensitivity of quantum vibrational energy to anharmonicity in a diatomic gasdynamic laser is defined and calculated by considering the corresponding diatomic molecules as quantum anharmonic oscillators under an interatomic Morse potential. The variation of the above parameter in terms of the vibrational states and in terms of an involved anharmonic coefficient is discussed. In particular, the parameter in question at the classical limit is examined. Both weak and strong anharmonicities are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号