首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Doubly quantized vortices were topologically imprinted in /F=1> 23Na condensates, and their time evolution was observed using a tomographic imaging technique. The decay into two singly quantized vortices was characterized and attributed to dynamical instability. The time scale of the splitting process was found to be longer at higher atom density.  相似文献   

2.
A quadruply-charged quantized vortex has been created successfully in the 87Rb Bose-Einstein Condensate (BEC). The condensate was confined in a cloverleaf magnetic trap, and the vortex was formed by the reversal of the axial magnetic field. The vortex could be observed only in a holding time of about 1 ms, which was much shorter than that reported in the Na BEC, and the vortex position was also unstable in the BEC. To overcome these experimental difficulties, we took the following two measures and improved the vortex formation: (i) axial confinement with a FORT, which prevents the BEC from axial expansion after the field reversal, and (ii) compensation of gravity with a blue-detuned laser beam, which removes the gravitational sag.  相似文献   

3.
徐岩  贾多杰  李希国  左维  李发伸 《物理学报》2004,53(9):2831-2834
给出了大N近似下轴对称、扁椭球状玻色-爱因斯坦凝聚体在轴对 称各向异性谐振子势阱中单个涡旋态的一个近似解析波函数,并利用能量泛函变分的方法确 定了待定参数C与凝聚体总粒子数N和凝聚体形状因子λ的关系.C随N(或λ)的变化非常缓慢,在N和λ很大时,C趋于稳定值0.321646. 关键词: 玻色-爱因斯坦凝聚 GP泛函 涡旋态  相似文献   

4.
We present simulation results of the vortex dynamics in a trapped Bose-Einstein condensate in the presence of a rotating optical lattice. Changing the potential amplitude and the relative rotation frequency between the condensate and the optical lattice, we find a rich variety of dynamical phases of vortices. The onset of these different phases is described by the force balance of a driving force, a pinning force, and vortex-vortex interactions. In particular, when the optical lattice rotates faster than the condensate, an incommensurate effect leads to a vortex-liquid phase supported by the competition between the driving force and the dissipation.  相似文献   

5.
S. Kling  A. Pelster 《Laser Physics》2009,19(5):1072-1078
Within a variational approach to solving the Gross-Pitaevskii equation we investigate dynamical properties of a rotating Bose-Einstein condensate confined in an anharmonic trap. In particular, we calculate the eigenfrequencies of low-energy excitations out of the equilibrium state and the aspect ratio of the condensate widths during the free expansion.  相似文献   

6.
Coreless vortices were phase imprinted in a spinor Bose-Einstein condensate. The three-component order parameter of F=1 sodium condensates held in a Ioffe-Pritchard magnetic trap was manipulated by adiabatically reducing the magnetic bias field along the trap axis to zero. This distributed the condensate population across its three spin states and created a spin texture. Each spin state acquired a different phase winding which caused the spin components to separate radially.  相似文献   

7.
We derive the effective Gross-Pitaevskii equation for a slowly rotating dipolar Bose-Einstein condensate (BEC) with a quantized vortex along a one-dimensional optical lattice and calculate its band structures. The band structure of a slowly rotating BEC in a lattice becomes interesting when dipole-dipole interaction (DDI) is involved. Under rotation, a dipolar rotating term emerges from the DDI potential. The dipolar rotating term makes a BEC with an attractive DDI more stable than one with a repulsive DDI. The dipolar rotating term changes and generalizes the definition for the type of BEC, which cannot be simply determined by an s-wave scattering length or an effective contact interaction term. The dipolar rotating term also makes the band structure fascinating and tunable. A so-called swallowtail band structure, i.e., a multi-valued solution due to nonlinear interaction, can either elongate or shrink as the band index increases, in contrast to a non-rotating dipolar BEC system with a monotonic dependence. With the dipolar rotating term, various band structures as well as an attractive BEC without collapse can be easily achieved. We demonstrate that a rotating dipolar BEC system subject to an optical lattice combines features of a crystal and a superfluid and promises wide applications.  相似文献   

8.
We analyze the hydrodynamic solutions for a dilute Bose-Einstein condensate with long-range dipolar interactions in a rotating, elliptical harmonic trap. The static solutions and their regimes of dynamical instability vary nontrivially with the strength of the dipolar interactions. We comprehensively map out this behavior, and, in particular, examine the experimental routes toward unstable dynamics, which, in analogy to conventional condensates, may lead to vortex lattice formation.  相似文献   

9.
The Bogoliubov-de Gennes equations are used for a number of theoretical works to describe quantum and thermal fluctuations of trapped Bose-Einstein condensates. We consider the case in which the condensate has a highly quantized vortex. It is known that these equations have complex eigenvalues in this case. We give the complete set including a pair of complex modes whose eigenvalues are complex conjugates to each other. The expansion of the quantum fields which represent neutral atoms in terms of the complete set brings the operators associated with the complex modes, which are simply neither bosonic nor fermionic ones. The eigenstate of the Hamiltonian is given. Introducing the notion of the physical states, we discuss the instability of the condensates in the context of Kubo’s linear response theory.  相似文献   

10.
We study experimentally the line of a single quantized vortex in a rotating prolate Bose-Einstein condensate confined by a harmonic potential. In agreement with predictions, we find that the vortex line is in most cases curved at the ends. We monitor the vortex line leaving the condensate. Its length is measured as a function of time and temperature. For a low temperature, the survival time can be as large as 10 sec. The length of the line and its deviation from the center of the trap are related to the angular momentum per particle along the condensate axis.  相似文献   

11.
We investigate the lowest state of a Bose-Einstein condensate with an off-center vortex state that is confined in a rotating harmonic potential. Our results are consistent with the fact that any single off-center vortex is unstable. Furthermore, a vortex state located at the center of the cloud first becomes locally stable as the rotational frequency increases. Finally our study implies the existence of hysteresis effects.  相似文献   

12.
An attractive Bose-Einstein condensate with a vortex splits into two pieces via the quadrupole dynamical instability, which arises at a weaker strength of interaction than the monopole and the dipole instabilities. The split pieces subsequently unite to restore the original vortex or collapse.  相似文献   

13.
Excitation spectroscopy of vortex lattices in rotating Bose-Einstein condensates is described. We numerically obtain the Bogoliubov-de Gennes quasiparticle excitations for a broad range of energies and analyze them in the context of the complex dynamics of the system. Our work is carried out in a regime in which standard hydrodynamic assumptions do not hold, and includes features not readily contained within existing treatments.  相似文献   

14.
We have theoretically investigated Kelvin waves of quantized vortex lines in trapped Bose-Einstein condensates. Counterrotating perturbation induces an elliptical instability to the initially straight vortex line, driven by a parametric resonance between a quadrupole mode and a pair of Kelvin modes of opposite momenta. Subsequently, Kelvin waves rapidly decay to longer wavelengths emitting sound waves in the process. We present a modified Kelvin wave dispersion relation for trapped superfluids and propose a simple method to excite Kelvin waves of specific wave number.  相似文献   

15.
We have created spatial dark solitons in two-component Bose-Einstein condensates in which the soliton exists in one of the condensate components and the soliton nodal plane is filled with the second component. The filled solitons are stable for hundreds of milliseconds. The filling can be selectively removed, making the soliton more susceptible to dynamical instabilities. For a condensate in a spherically symmetric potential, these instabilities cause the dark soliton to decay into stable vortex rings. We have imaged the resulting vortex rings.  相似文献   

16.
We interpret the recently observed spatial domain formation in spin-1 atomic condensates as a result of dynamical instability. Within the mean field theory, a homogeneous condensate is dynamically unstable (stable) for ferromagnetic (antiferromagnetic) atomic interactions. We find that this dynamical instability naturally leads to spontaneous domain formation as observed in several recent experiments for condensates with rather small numbers of atoms. For trapped condensates, our numerical simulations compare quantitatively to the experimental results, thus largely confirming the physical insight from our analysis of the homogeneous case.  相似文献   

17.
We analyze in detail the expansion of a 1D Bose gas after removing the axial confinement. We show that during its one-dimensional expansion the density of the Bose gas does not follow a self-similar solution. Our analysis is based on a nonlinear Schr?dinger equation with variable nonlinearity whose validity is discussed for the expansion problem, by comparing with an exact Bose-Fermi mapping for the case of an initial Tonks-Girardeau gas. For this case, the gas is shown to expand self-similarly, with a different scaling law compared to the one-dimensional Thomas-Fermi condensate.  相似文献   

18.
The problem of excitation of a homogeneous Bose-Einstein condensate by axially symmetric potential barriers moving with respect to the condensate with both supersonic and subsonic velocities is considered in terms of the Gross-Pitaevskii equation. The specific features of the structure of the vortex shedding past the barriers are analyzed for both regimes of motion.  相似文献   

19.
An asymptotic theory has been developed to describe the propagation and annihilation of vortex pairs in a smoothly inhomogeneous Bose-Einstein condensate with the repulsive interaction between atoms. It has been shown that the trajectories of vortex pairs coincide with geometric-optical rays in an equivalent isotropic medium with the refractive index depending both on the density of the unperturbed inhomogeneous condensate and on the energy of structures under study. The transformation of vortex pairs to vortex-free quasisolitons and back has been described.  相似文献   

20.
We study the way in which the geometry of the trapping potential affects the vortex velocity in a Bose-Einstein condensate confined by a toroidal trap. We calculate the vortex precession velocity through a simple relationship between such a velocity and the gradient of the numerically obtained vortex energy. We observe that our results correspond very closely to the velocity calculated through time evolution simulations. However, we find that the estimates derived from available velocity field formulas present appreciable differences. To resolve such discrepancies, we further study the induced velocity field, analyzing the effect of global features of the condensate on such a field and on the precession velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号