首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A phase-stabilized femtosecond frequency comb is used to measure high-resolution spectra of two-photon transition 62S1/2-62P1/2,3/2-82S1/2 in a cesium vapor.The broadband laser output from a femtosecond frequency comb is split into counter-propagating parts,shaped in an original way,and focused into a room-temperature cesium vapor.We obtain high-resolution two-photon spectroscopy by scanning the repetition rate of femtosecond frequency comb,and through absolute frequency measurements.  相似文献   

2.
徐琴芳  尹默娟  孔德欢  王叶兵  卢本全  郭阳  常宏 《物理学报》2018,67(8):80601-080601
提出一种结合注入锁定技术的主动滤波放大方法,将光梳直接注入锁定至光栅外腔半导体激光器,产生窄线宽激光光源,该光源可以用于锶原子光钟二级冷却.实验中,将中心波长为689 nm,带宽为10 nm的光梳种子光源注入689 nm光栅式外腔半导体激光器,通过半导体增益光谱与半导体光栅外腔,从飞秒光梳的多个纵模梳齿中挑选出一个纵模模式来进行增益放大,再通过模式竞争,实现单纵模连续光输出;同时,光梳的重复频率锁定在线宽为赫兹量级的698 nm超稳激光光源上,因此,注入锁定后输出的窄线宽激光也继承了超稳激光光源的光谱特性.利用得到的输出功率为12 mW的689 nm窄线宽激光光源实现了88Sr原子光钟的二级冷却过程,最终获得温度为3μK,原子数约为5×10~6的冷原子团.该方法可拓展至原子光钟其他光源的获得,从而实现原子光钟的集成化和小型化.  相似文献   

3.
We report a mode-locked Ti:sapphire femtosecond laser with 5GHz repetition rate. Spectral broadening of the 24 fs pulses in a microstructured fiber yields an octave-spanning spectrum and permits self-referencing and active stabilization of the emitted femtosecond laser frequency comb (FLFC). The individual modes of the 5 GHz FLFC are resolved with a high-resolution spectrometer based on a virtually imaged phased array spectral disperser. Isolation of single comb elements at a microwatt average power level is demonstrated. The combination of the high-power, frequency-stabilized 5 GHz laser and the straightforward resolution of its many modes will benefit applications in direct frequency comb spectroscopy. Additionally, such a stabilized FLFC should serve as a useful tool for direct mode-by-mode Fourier synthesis of optical waveforms.  相似文献   

4.
由于受增益介质上能级寿命的影响,掺Er光纤光梳的梳齿线宽一般在百kHz量级.为了实现光梳梳齿线宽的压窄,一种有效的方法是在激光器中增加快速响应的电光晶体,使光纤光梳的伺服锁定带宽提高到百kHz以上,为光纤光梳的快速伺服锁定提供反馈机构.这其中,高品质的飞秒激光器是核心.基于此,本文主要研究了掺Er光纤飞秒激光器中电光晶体对激光器参数的影响.通过计算电光晶体的折射率、色散、相位延迟等参数,分析了电光晶体对激光器参数的影响,并在实验上获得了电光晶体电压对激光器重复频率和载波包络偏移频率的影响,进而通过电光晶体实现了对光纤光梳重复频率和载波包络偏移频率的锁定.通过锁定光纤飞秒激光器与窄线宽激光器的拍频信号,验证了电光晶体的引入使激光器的伺服锁定带宽提高到了236 kHz,为窄线宽飞秒光学频率梳的建立提供了技术基础.  相似文献   

5.
We demonstrate the generation of phase-coherent frequency combs in the vacuum utraviolet spectral region. The output from a mode-locked laser is stabilized to a femtosecond enhancement cavity with a gas jet at the intracavity focus. The resulting high-peak power of the intracavity pulse enables efficient high-harmonic generation by utilizing the full repetition rate of the laser. Optical-heterodyne-based measurements reveal that the coherent frequency comb structure of the original laser is fully preserved in the high-harmonic generation process. These results open the door for precision frequency metrology at extreme ultraviolet wavelengths and permit the efficient generation of phase-coherent high-order harmonics using only a standard laser oscillator without active amplification of single pulses.  相似文献   

6.
Optical frequency combs from mode‐locked femtosecond lasers have link optical and microwave frequencies in a single step, and they provide the long missing clockwork for optical atomic clocks. By extending the limits of time and frequency metrology, they enable new tests of fundamental physics laws. Precise comparisons of optical resonance frequencies of atomic hydrogen and other atoms with the microwave frequency of a cesium atomic clock are establishing sensitive limits for possible slow variations of fundamental constants. Optical high harmonic generation is extending frequency comb techniques into the extreme ultraviolet, opening a new spectral territory to precision laser spectroscopy. Frequency comb techniques are also providing a key to attosecond science by offering control of the electric field of ultrafast laser pulses. In our laboratories at Stanford and Garching, the development of new instruments and techniques for precision laser spectroscopy has long been motivated by the goal of ever higher resolution and measurement accuracy in optical spectroscopy of the simple hydrogen atom which permits unique confrontations between experiment and fundamental theory. This lecture recounts these adventures and the evolution of laser frequency comb techniques from my personal perspective.  相似文献   

7.
刘欢  曹士英  孟飞  林百科  方占军 《物理学报》2015,64(9):94204-094204
飞秒光学频率梳波长覆盖范围向可见光波长扩展对于碘稳频激光的绝对频率测量以及光钟研究中钟激光的绝对频率测量都具有十分重要的意义. 本文在自行研制掺Er光纤飞秒光学频率梳的基础上, 采用放大-倍频-扩谱的方案, 实现了激光输出波长向可见光波长的扩展. 掺Er光纤飞秒光学频率梳输出的一部分光激光脉冲, 功率约为8 mW, 首先经掺Er光纤放大器将功率提高到531 mW, 此后利用MgO: PPLN晶体倍频, 倍频后激光的功率为170 mW, 倍频效率为32%, 脉冲宽度为85 fs. 倍频后的激光通过光子晶体光纤进行光谱展宽. 通过优化入射光偏振状态可以实现波长覆盖500-1000 nm, 输出功率为85 mW, 耦合效率为50%. 采用小型化碘稳频532 nm Nd: YAG激光器输出激光与光学频率梳光谱展宽后的激光进行拍频可以获得30 dB的拍频信号. 覆盖可见光波长的掺Er光纤飞秒光学频率梳为可见光范围内激光的绝对频率测量提供了技术手段.  相似文献   

8.
We link the output spectra of a Ti:sapphire and a Cr:forsterite femtosecond laser phase coherently to form a continuous frequency comb with a wavelength coverage of 0.57-1.45 microm at power levels of 1 nW to 40 microW per frequency mode. To achieve this, the laser repetition rates and the carrier-envelope offset frequencies are phase locked to each other. The coherence time between the individual components of the two combs is 40 micros. The timing jitter between the lasers is 20 fs. The combined frequency comb is self-referenced for access to its overall offset frequency. We report the first demonstration to our knowledge of an extremely broadband and continuous, high-powered and phase-coherent frequency comb from two femtosecond lasers with different gain media.  相似文献   

9.
We report a mode-locked Ti:sapphire femtosecond laser emitting 42 fs pulses at a 10 GHz repetition rate. When operated with a spectrally integrated average power greater than 1 W, the associated femtosecond laser frequency comb contains approximately 500 modes, each with power exceeding 1 mW. Spectral broadening in nonlinear microstructured fiber yields comb elements with individual powers greater than 1 nW over approximately 250 nm of spectral bandwidth. The modes of the emitted comb are resolved and imaged with a simple grating spectrometer and digital camera. Combined with absorption spectroscopy of rubidium vapor, this approach permits identification of the mode index and measurement of the carrier envelope offset frequency of the comb.  相似文献   

10.
Shiying Cao 《中国物理 B》2022,31(7):74207-074207
Femtosecond optical frequency combs correlate the microwave and optical frequencies accurately and coherently. Therefore, any optical frequency in visible to near-infrared region can be directly traced to a microwave frequency. As a result, the length unit "meter" is directly related to the time unit "second". This paper validates the capability of the national wavelength standards based on a home-made Er-doped fiber femtosecond optical frequency comb to measure the laser frequencies ranging from visible to near-infrared region. Optical frequency conversion in the femtosecond optical frequency comb is achieved by combining spectral broadening in a highly nonlinear fiber with a single-point frequency-doubling scheme. The signal-to-noise ratio of the beat notes between the femtosecond optical frequency comb and the lasers at 633, 698, 729, 780, 1064, and 1542 nm is better than 30 dB. The frequency instability of the above lasers is evaluated by using a hydrogen clock signal with a instability of better than 1×10-13 at 1-s averaging time. The measurement is further validated by measuring the absolute optical frequency of an iodine-stabilized 532-nm laser and an acetylene-stabilized 1542-nm laser. The results are within the uncertainty range of the international recommended values. Our results demonstrate the accurate optical frequency measurement of lasers at different frequencies using the femtosecond optical frequency comb, which is not only important for the precise and accurate traceability and calibration of the laser frequencies, but also provides technical support for establishing the national wavelength standards based on the femtosecond optical frequency comb.  相似文献   

11.
Microstructure fibers are shown to allow the creation of new tunable sources for femtosecond nonlinear spectroscopy. These fibers provide a high efficiency of frequency upconversion of regeneratively amplified femtosecond pulses of a Cr:forsterite laser, permitting the generation of subpicosecond anti-Stokes pulses with a smooth temporal envelope and a linear positive chirp. These pulses from a microstructure fiber were used to measure the spectra of coherent anti-Stokes Raman scattering (CARS) of toluene solution by cross-correlating these pulses with the femtosecond second-harmonic output of the Cr:forsterite laser in boxcars geometry (XFROG CARS). PACS 42.65.Wi; 42.81.Qb  相似文献   

12.
We report a new absolute frequency measurement of the Cs 6s-8s two-photon transition measured using frequency comb spectroscopy. The fractional frequency uncertainty is 5x10(-11), a factor of 6 better than previous results. The comb is derived from a stabilized picosecond laser and referenced to an octave-spanning femtosecond frequency comb. The relative merits of picosecond-based frequency combs are discussed, and it is shown that the AC Stark shift of the transition is determined by the average rather than the much larger peak intensity.  相似文献   

13.
曹士英  蔡岳  王贵重  孟飞  张志刚  方占军  李天初 《物理学报》2011,60(9):94208-094208
本文介绍了基于掺Er光纤飞秒激光器光学频率梳中光学部分的研制. 实验上采用重复频率为230 MHz的掺Er光纤飞秒激光器,通过放大、光谱展宽以及单臂f2f系统,在优化及分析相关参数影响的基础上,获得了~30 dB信噪比f0的输出,为光纤光学频率梳的建立奠定了基础. 关键词: 掺Er光纤激光器 光学频率计量 光纤光学频率梳 光谱展宽  相似文献   

14.
M. Hori  A. Dax 《Hyperfine Interactions》2009,194(1-3):195-199
Two laser systems were developed by the ASACUSA collaboration of CERN to carry out spectroscopy experiments on antiprotonic atoms. One of these was a continuous-wave pulse-amplified dye laser which was frequency-stabilized to a femtosecond frequency comb. The other generated 700-ps-long laser pulses of wavelengths λ?=?266 and 532 nm using two stimulated Brillouin scattering cells filled with water.  相似文献   

15.
Cruz FC  Stowe MC  Ye J 《Optics letters》2006,31(9):1337-1339
A tapered semiconductor amplifier is injection seeded by a femtosecond optical frequency comb at 780 nm from a mode-locked Ti:sapphire laser. Energy gains of more than 17 dB(12 dB) are obtained for 1 mW(20 mW) of average input power when the input pulses are stretched into the picosecond range. A spectral window of supercontinuum light generated in a photonic fiber has also been amplified. Interferometric measurements show sub-Hertz linewidths for a heterodyne beat between the input and amplified comb components, yielding no detectable phase-noise degradation under amplification. These amplifiers can be used to boost the infrared power in f-to-2f interferometers used to determine the carrier-to-envelope offset frequency, with clear advantages for stabilization of octave-spanning femtosecond lasers and other supercontinuum light sources.  相似文献   

16.
We demonstrated a novel scheme for scanning the absolute frequencies of a femtosecond Kerr-lens mode-locked Ti:sapphire laser with the repetition rate unaffected, where the carrier-envelop phase of the pulse was controlled by slightly shifting pump beam and the repetition rate was phase locked to a stable radio-frequency oscillator. Since it was the first time to stabilize the frequency of a mode-locked laser by referring directly to the frequency of cesium two-photon-transition (TPT) stabilized diode laser, we evaluated the frequency instability and the frequency accuracy that showed the characteristic of being a comb laser. The feature of the comb laser in this report will be significant for multi-photon spectroscopy where the frequency difference between comb lines plays a key role. PACS  06.30.+v; 42.60.By  相似文献   

17.
A frequency comb is generated with a chromium-doped forsterite femtosecond laser, spectrally broadened in a dispersion-shifted highly nonlinear fiber, and stabilized. The resultant evenly spaced comb of frequencies ranges from 1.1 to beyond 1.8 microm. The frequency comb was referenced simultaneously to the National Institute of Standards and Technology's optical frequency standard based on neutral calcium and to a hydrogen maser that is calibrated by a cesium atomic fountain clock. With this comb we measured two frequency references in the telecommunications band: one half of the frequency of the d/f crossover transition in 87Rb at 780 nm, and the methane v2 + 2v3 R(8) line at 1315 nm.  相似文献   

18.
孙青  杨奕  邓玉强  孟飞  赵昆 《物理学报》2016,65(15):150601-150601
频率是电磁波最重要的一个基本物理量,随着THz技术的发展,在光源研制、宽带通信、超精细光谱测量等领域都对THz频率的高精度侧量提出了要求.传统的Fabry-Perot干涉法与外差探测法难以实现THz频率的高精度测量,频率梳方法虽然测量精度很高,但测量系统复杂.本文提出一种利用重复频率自由漂移的飞秒激光器实现太赫兹频率精密测量的新方法.通过对非锁定的飞秒激光器的重复频率和THz拍频频率进行同时连续采集与计算,得到被测THz频率,测量精度可以达到10~(-10)量级无需对飞秒激光重复频率进行复杂的锁定控制,测量系统大大简化.  相似文献   

19.
飞秒钛宝石光学频率梳的精密锁定   总被引:6,自引:0,他引:6       下载免费PDF全文
经相位锁定后的飞秒钛宝石光学频率梳已经广泛用于绝对光频的测量,这是光频标领域一个革命性的突破.在自建的90MHz飞秒钛宝石激光器的基础上首先采用光子晶体光纤将其光谱展宽到一个光倍频程,接着利用锁相环技术分别将重复频率和载波包络频移同时高精度地锁定到一台稳定度为6×10-14的Cs钟上,进而得到了稳定度相同的飞秒光学频率梳.  相似文献   

20.
We present direct observation of the velocity-selective optical pumping of the Rb ground state hyperfine levels induced by 5S(1/2) --> 5P(1/2) femtosecond pulse-train excitation. A modified direct frequency comb spectroscopy based on the fixed frequency comb and a weak cw scanning probe laser was developed. The femtosecond pulse-train excitation of a Doppler-broadened Rb four-level atomic vapor is investigated theoretically in the context of the density matrix formalism and the results are compared with the experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号