首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wave aspects inherent in quantum physics lead to observable consequences, which are far removed from classical intuition. The possibility of interaction-free measurement is one consequence of quantum wave nature at the single particle level. To date, all experiments, which have studied interaction-free measurements, have dealt with modification of the amplitude of the wave function. In this paper, we discuss interaction-free measurements of a second type, where only the phase of the wave function is modified. We show that an example discussed by Penrose is in this class and clarify the physical reasons for loss of interference in such measurements. We discuss the experimental feasibility of interaction-free measurements of the second type, employing micromaser cavities and atom interferometers. One scheme leads to the possibility of interactionfree measurement of the finesse of the cavity by observing atoms that never interacted with the cavity. The loss of interference, in this case, is due to a random spinor phase and there is no Heisenberg momentum back-action. This is the first experimental proposal for interaction-free measurements of pure phase changes.  相似文献   

2.
Internal waves usually cause temporal and spatial changes of density and consequently affect the acoustic wave propagation in the ocean. The purpose of this study is a laboratory investigation of the effects of internal waves generated by oscillation of a cylinder in a large stratified glass tank with a sloping bed on the sound waves propagation. Results showed that sound waves are affected by internal waves that depend on the slope angle to the direction of internal wave propagation angle ratio. When the ratio is subcritical or supercritical, the acoustic signal is much reduced as compared to the case with no sloped bottom. This can be explained in terms of the internal waves energy reaching the sloped bed and their reflections.  相似文献   

3.
We used the pump-probe method to study of nonlinear behavior of an azo dye-doped nematic mixture. We demonstrated that the light-induced nonlinearity can be reversed via both of the ordinary and extraordinary components of the pump beam. It is also showed that the light-induced torque can be changed as the angle between the wave vector of the extraordinary component of the pump beam and the director is varied; a high fraction of the isomers are in the trans case for small angles, and for above a critical angle the cis isomer concentration is overcome. In addition, it was shown that the nonlinearity of the sample could be changed by an ordinary component of pump beam. Consequently, an ordinary ray can control the nonlinear behavior of the sample.  相似文献   

4.
A kinematic approach is considered whereby the wavenumber jump conditions in conjunction with the appropriate dispersion relations is applied to the investigation of the normal and oblique interaction of a plane acoustic wave with a plane shock wave. For the normal interaction of an acoustic wave with a stationary plane shock a logarithmic shift in the wave spectra is obtained. For the normal interaction with a moving shock front it is shown that for shock Mach numbers above a critical value, the frequency of the transmitted wave becomes negative. This results in the fact that the crests of the transmitted signal arrive at a fixed observer in a reverse order to their generation. Finally, the oblique interaction of an acoustic wave with a stationary shock is considered. The “Snell's Law” for the transmitted wave is derived and two special angles of incidence are identified. The first is a no-refraction angle: i.e., the transmitted wave angle is the same as the incident wave angle. The second is a critical angle such that for incident angles greater than this critical angle there is no transmitted wave. A necessary and sufficient condition for the existence of a transmitted wave is derived in terms of the speed of sound and Mach number of the fluid and the frequency and tangential wavenumber component of the incident wave.The dynamics aspects of the interaction concerning the determination of the frequency independent transmission coefficients and shock displacements are determined for the simple case of the normal interaction with a moving shock as an illustration.  相似文献   

5.
Attached ultrasonic sensors can detect changes caused by crack initiation and growth if the wave path is directed through the area of critical crack formation. Dynamics of cracks opening and closing under load cause nonlinear modulation of received ultrasonic signals, enabling small cracks to be detected by stationary sensors. A methodology is presented based upon the behavior of ultrasonic signals versus applied load to detect and monitor formation and growth of cracks originating from fastener holes. Shear wave angle beam transducers operating in through transmission mode are mounted on either side of the hole such that the transmitted wave travels through the area of expected cracking. Time shift is linear with respect to load, and is well explained by path changes due to strain combined with wave speed changes due to acoustoelasticity. During subsequent in situ monitoring with unknown loads, the measured time of flight is used to estimate the load, and behavior of the received energy as a function of load is the basis for crack detection. Results are presented from low cycle fatigue tests of several aluminum specimens and illustrate the efficacy of the method in both determining the applied load and monitoring crack initiation and growth.  相似文献   

6.
Helical springs constitute an integral part of many mechanical systems. Usually, a helical spring is modelled as a massless, frequency independent stiffness element. For a typical suspension spring, these assumptions are only valid in the quasi-static case or at low frequencies. At higher frequencies, the influence of the internal resonances of the spring grows and thus a detailed model is required. In some cases, such as when the spring is uniform, analytical models can be developed. However, in typical springs, only the central turns are uniform; the ends are often not (for example, having a varying helix angle or cross-section). Thus, obtaining analytical models in this case can be very difficult if at all possible. In this paper, the modelling of such non-uniform springs are considered. The uniform (central) part of helical springs is modelled using the wave and finite element (WFE) method since a helical spring can be regarded as a curved waveguide. The WFE model is obtained by post-processing the finite element (FE) model of a single straight or curved beam element using periodic structure theory. This yields the wave characteristics which can be used to find the dynamic stiffness matrix of the central turns of the spring. As for the non-uniform ends, they are modelled using the standard finite element (FE) method. The dynamic stiffness matrices of the ends and the central turns can be assembled as in standard FE yielding a FE/WFE model whose size is much smaller than a full FE model of the spring. This can be used to predict the stiffness of the spring and the force transmissibility. Numerical examples are presented.  相似文献   

7.
通过建立微波激励下的非对称条形多铁纳磁体的微磁模型,研究了倾斜角和缺陷角对该形纳磁体的铁磁共振谱和自旋波模式的影响.通过对微磁仿真得到的动态磁化数据进行分析发现,非对称条形纳磁体倾斜角度增加,铁磁共振频率随之增加,而这一现象与纳磁体的缺陷角度无关.倾斜角不变,非对称条形纳磁体的铁磁共振频率与缺陷角度呈单调递增关系,并且不同缺陷角度纳磁体的自旋波模式显示出极大的差异.非对称条形纳磁体与矩形纳磁体相比,它的自旋波模式局部化,具体为非对称条形纳磁体的自旋波模式不对称且高进动区域存在于边缘,表现为非对称边缘模式.倾斜角改变导致纳磁体内部退磁场变化,引起纳磁体边缘模式的移动,而中心模式对倾斜角的变化并不敏感.最后,对建立的模型在高频微波磁场激励下的磁损耗进行了分析,验证了模型的可靠性.这些结论说明缺陷角和倾斜角可用于纳磁体自旋波模式和铁磁共振频率的调谐,所得结果为可调纳磁微波器件的设计提供了重要的理论依据和思路.  相似文献   

8.
The plane problem of high-frequency acoustic wave diffraction by a segment with impedance boundary conditions is considered. The angle of incidence of waves is assumed to be small (oblique). The paper generalizes the method previously developed by the authors for an ideal segment (with Dirichlet or Neumann boundary conditions). An expression for the directional pattern of the scattered field is derived. The optical theorem is proved for the case of the parabolic equation. The surface wave amplitude is calculated, and the results are numerically verified by the integral equation method.  相似文献   

9.
We analyze the response of a dipole antenna to the noise-like and/or regular (quasimonochromatic) plasma oscillations and waves. The antenna is immersed in an isotropic plasma moving with velocity greater than the electron thermal velocity. In the case of a noise field, we calculate the squared spectral power density of the noise voltage at the input of a receiving antenna for frequencies close to the electron plasma frequency. It is shown that the main contribution to the noise is made by the radiation due to the excitation of waves at anomalous Doppler frequencies. In the case of an incident monochromatic wave, the mean square voltage at the antenna input is calculated as a function of the wave frequency and angle of arrival. It is shown that the effective antenna length can differ strongly from the geometrical length of the dipole. This fact results from the dispersion of longitudinal waves ensuring that many plane waves (a continuum, in the limiting case) contribute to the re-radiated field for a given direction of propagation of the radiation energy.  相似文献   

10.
采用二维多组分有化学反应的Euler方程,考虑单步化学反应,采用有限反应速率模型,对斜爆震波进行计算,通过将数值模拟结果与实验结果对比,验证了数值模拟方法的有效性。在此基础上,对氢空气绕流无限长斜劈的斜爆震过程进行了数值模拟,分析了斜劈角度对斜爆震波特性的影响。结果表明:当斜劈角度增大时,爆震波中的化学反应速率随之增大,相应的斜爆震波的角度也增加,波后的温度更高,同时波后法向马赫数减小。  相似文献   

11.
为了研究调整架角度误差以及波片与光源波长不匹配对线偏振光经过1/4波片之后偏振态的影响,本文利用坐标变换法得到1/4波片的琼斯矩阵,并用琼斯矩阵表示各偏振态。推导出波片与光源不匹配时对偏振态的影响理论模型。当考虑到调整架的角度误差时,对入射光偏振态以及波片的琼斯矩阵表达式做引入角度误差的泰勒展开,最后得到和实验结果匹配的仿真曲线。仿真结果表明,当采用808 nm 1/4波片对795 nm波长的线偏振光作用时,在不考虑调整误差的理想情况下出射光椭圆度最高为0.9746,考虑调整误差时,对应理想情况下椭圆度最高为0.96,椭圆度最高点偏移1.72°。仿真和实验结果为进一步分析泵浦光椭圆度对原子参数的影响提供了依据。  相似文献   

12.
A unified boundary integral equation (BIE) is developed for the scattering of elastic and acoustic waves. Traditionally, the elastic and acoustic wave problems are solved separately with different BIEs. The elastic wave case is represented in a vector BIE with the traction and displacement vectors as unknowns whereas the acoustic wave case is governed by a scalar BIE with velocity potential or pressure as unknowns. Although these two waves can be unified in the form of a partial differential equation, the unified form in its BIE counterpart has not been reported. In this work, we derive the unified BIE for these two waves and then show that the acoustic wave case can be derived from this BIE by introducing a shielding loss for small shear modulus approximation; hence only one code needs to be maintained for both elastic and acoustic wave scattering. We also derive the asymptotic Green's tensor for zero shear modulus and solve the corresponding vector equation. We employ the method of moments, which has been widely used in electromagnetics, as a numerical tool to solve the BIEs involved. Our numerical experiments show that it can also be used robustly in elastodynamics and acoustics.  相似文献   

13.
Stimulated Mandelstam-Brillouin scattering at small angles is considered in the case of a powerful laser beam propagating in the static mode in an unbounded medium. In contrast to the pulse mode, a hypersonic wave can be formed not only in the backward direction, but also in the forward direction at small angles. In this work, the latter case is considered as having the smallest value of the threshold intensity. It is shown that finite dimensions of the beam significantly change the excitation conditions for a scattered radiation owing to the mismatch of the wave triplet due to diffraction effects. Determination of the threshold intensity is shown to be possible using the well-known expressions for a plane wave only if the Fresnel number of the beam on the path the length of which is equal to the distance of the optical wave decay due to absorption in the medium is much larger than unity. Moreover, a large number of decay distances of the hypersonic wave must fall on the beam radius. When these conditions are not satisfied, the threshold intensity increases as compared to the plane wave.  相似文献   

14.
双轴晶体薄膜光学隧道效应   总被引:2,自引:1,他引:1  
张为权 《光子学报》1999,28(4):360-363
本文提出了一种研究晶体薄膜光学隧道效应的方法。我们计算了在最一般情况下双轴晶体中迅衰波的复折射率和复折射角。我们也讨论了隧道效应时晶体薄膜的反射和透射系数,找到了这些系数和薄膜光学参量的关系。这提供了用光学隧道效应检测晶体薄膜的理论基础。  相似文献   

15.
A new method is suggested for solving the problem of scattering of a plane electromagnetic wave by dielectric particles with the axial symmetry. The method is based on the separation of fields into two parts: the axially symmetric part, which is independent of the angle of rotation, and the part that is not axially symmetric, which vanishes upon averaging over this angle. The scattering problem is solved separately for each of the parts. In the first case, scalar potentials related to the azimuthal components of electromagnetic fields are used, and in the second case, superpositions of the Debye potentials and vertical components of the Hertz vectors are used. The surface integral equations for these potentials are obtained. They are represented as expansions in the spherical wave functions. The infinite systems of linear algebraic equations are obtained for unknown expansion coefficients. Our calculations demonstrated the high efficiency of the new method.  相似文献   

16.
We report results on dispersion relations and instabilities of traveling waves in excitable systems. Experiments employ solutions of the 1,4-cyclohexanedione Belousov-Zhabotinsky reaction confined to thin capillary tubes which create a pseudo-one-dimensional system. Theoretical analyses focus on a three-variable reaction-diffusion model that is known to reproduce qualitatively many of the experimentally observed dynamics. Using continuation methods, we show that the transition from normal, monotonic to anomalous, single-overshoot dispersion curves is due to an orbit flip bifurcation of the solitary pulse homoclinics. In the case of “wave stacking”, this anomaly induces attractive pulse interaction, slow solitary pulses, and faster wave trains. For “wave merging”, wave trains break up in the wake of the slow solitary pulse due to an instability of wave trains at small wavelength. A third case, “wave tracking” is characterized by the non-existence of solitary waves but existence of periodic wave trains. The corresponding dispersion curve is a closed curve covering a finite band of wavelengths.  相似文献   

17.
A unified boundary integral equation (BIE) is developed for the scattering of elastic and acoustic waves. Traditionally, the elastic and acoustic wave problems are solved separately with different BIEs. The elastic wave case is represented in a vector BIE with the traction and displacement vectors as unknowns whereas the acoustic wave case is governed by a scalar BIE with velocity potential or pressure as unknowns. Although these two waves can be unified in the form of a partial differential equation, the unified form in its BIE counterpart has not been reported. In this work, we derive the unified BIE for these two waves and then show that the acoustic wave case can be derived from this BIE by introducing a shielding loss for small shear modulus approximation; hence only one code needs to be maintained for both elastic and acoustic wave scattering. We also derive the asymptotic Green's tensor for zero shear modulus and solve the corresponding vector equation. We employ the method of moments, which has been widely used in electromagnetics, as a numerical tool to solve the BIEs involved. Our numerical experiments show that it can also be used robustly in elastodynamics and acoustics.  相似文献   

18.
The high-frequency acoustic field in the half-shadow region on the surface of a strongly elongated body of rotation is studied. The asymptotic formulas obtained earlier for axial incidence of a plane wave are generalized to the case of incidence of a wave at a small angle to the body axis. The results of calculations are presented. Analysis has been performed on how the angle of incidence and the parameter describing the degree of elongation of the body affect the character of the field distribution over the surface.  相似文献   

19.
A method is developed to analyze the distortion of stress waves resulting. from sinusoidal strains. This distortion can result from two effects: (a) changes in modulus as function of strain (or angle θ) during the cycle, and (b) changes in mechanical loss as function of strain (or angle θ) during the cycle. The determination of the relative contribution of these two effects requires the knowledge of specimen modulus and loss at each instant of the experiment. This can be achieved by superimposing a high frequency small amplitude wave on the high amplitude low frequency wave. This technique is used in the analysis of dynamic responses of nylon 6 fibers. The results show that the energy loss in extension is different from that in contraction. This indicates that, in addition to strain dependence of modulus and loss, the analysis of the hysteresis curve must account also for the reversible strain induced structural change. An analytical procedure is presented to treat the data, and the effects of strain amplitude and temperature on the type of strain-induced structural changes are discussed.  相似文献   

20.
提出了一种正弦调制多光束激光外差二次谐波测量微冲量的新方法,将激光与工质靶作用产生的微冲量转化为扭摆的转动角度测量,基于激光外差技术和多普勒效应,把待测转角信息加载到外差信号的频率差中,经信号解调后可以得到待测转角值,通过多次测量取平均值的方法可以提高待测转角的测量精度,从而提高微冲量的测量精度。利用这种新方法,以PVC+2%C为工质靶,利用MATLAB仿真测量了激光与工质靶作用产生的微冲量,结果表明:该测量的最大相对误差小于0.8%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号