首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The pLn-pC H diagrams obtained by a radiometric technique were used for the determination of the solubility and the first hydrolysis constants for La, Pr, Eu, Er, and Lu in 1 M NaCl ionic strength at 303 K. The saturation and unsaturation zones, and the borderline of precipitation were determined from these diagrams. The first hydrolysis constants were determined from pH titrations where no precipitation was found; these data were treated with the SUPERQUAD program. Fitting methods involving pLn versus pC H and the average ligand number vs. pC H were used to calculate both the first hydrolysis constants and the solubility products. The log K sp values obtained for La, Pr, Eu, Er, and Lu were –19.53, –20.92, –22.24, –22.62, and –23.05 and the log* 1 average values obtained were –8.87 ± 0.05, –8.54 ± 0.04, –8.34 ± 0.03, –8.16 ± 0.04, and –8.11 ± 0.03, respectively, under CO2 free conditions. Finally, the results were compared with those found in the literature.  相似文献   

2.
The dependence of L-glutamine protonation and its complexation with dioxovanadium(V) on ionic strength (I) is reported in sodium perchlorate solution as a background salt. The measurements have been performed at 25 ± 0.1°C and various ionic strengths in the range 0.1 to 1.0 mol/l, using a combination of potentiometric and spectrophotometric techniques. The overall analysis of the present and the previous data dealing with the determination of stability constants at different ionic strengths allowed us to obtain a general equation, by which a formation constant determined at a fixed ionic strength can be calculated, with a good approximation, at another ionic strength, if 0.1 I 1.0 mol/l (NaClO4).  相似文献   

3.
2-Keto-D-gluconate (kG) is naturally produced in soils, sediments and rock faces through the microbial oxidation of glucose. Studies have qualitatively shown kG to enhance the dissolution of soil minerals. However, quantitative information, such as the log K values for the formation of metal–kG complexes, are not available. This paper presents the results of potentiometric titration studies that employ H+ and Ca2+ ion selective electrodes (ISEs) to determine the conditional ion association constants (log Q values) for the protonation and deprotonation of kG and the formation of Ca–kG complexes. The experimentally-determined log Q values were then converted to the corresponding ion association constants (the zero ionic strength condition; log K values) by employing a modified Davies equation for charged species and the Setchenów equation for neutral species. The log K values were determined by potentiometric titrations at constant kG concentration, varied ionic strengths, 25 or 22 C, and in the absence of CO2. The computer model GEOCHEM-PC was used to determine the aqueous speciation of ions other than kG and the computer model FITEQL was used to estimate conditional log Q values for reactions in the various chemical models. Based on our evaluations, equilibrium constants for the following reactions were determined: H++ kG ⇌ HkG0, log Ka1 = (3.00 ± 0.06), kG⇌ H–1kG2–+ H+, log Ka–1 = –(11.97 ± 0.41), and Ca2++ kG⇌ CakG+, log K101 = (1.74 ± 0.04).  相似文献   

4.
The specific ion interaction theory (SIT) was applied to the first hydrolysis constants of Eu(III) and solubility product of Eu(OH)3 in aqueous 2, 3 and 4 mol⋅dm−3 NaClO4 at 303.0 K, under CO2-free conditions. Diagrams of pEuaq versus pCH were constructed from solubilities obtained by a radiometric method, the solubility product log10 Ksp, Eu(OH)3I {Eu(OH)3(s) Euaq3++ 3OHaq } values were calculated from these diagrams and the results obtained are log10 Ksp,Eu(OH)3I = − 22.65 ± 0.29, −23.32 ± 0.33 and −23.70 ± 0.35 for ionic strengths of 2, 3 and 4 mol⋅dm−3 NaClO4, respectively. First hydrolysis constants {Euaq3++H2O Eu(OH)(aq)2++H+ } were also determined in these media by pH titration and the values found are log10βEu,HI = − 8.19 ± 0.15, −7.90 ± 0.7 and −7.61 ± 0.01 for ionic strengths of 2, 3, and 4 mol⋅dm−3 NaClO4, respectively. Total solubilities were estimated taking into account the formation of both Eu3+ and Eu(OH)2+ (7.7 < pCH < 9) and the values found are: 1.4 × 10−6 mol⋅dm−3, 1.2 × 10−6 mol⋅dm−3 and 1.3 × 10−6 mol⋅dm−3, for ionic strengths of 2, 3 and 4 mol⋅dm−3 NaClO4, respectively. The limiting values at zero ionic strength were extrapolated by means of the SIT from the experimental results of the present research together with some other published values. The results obtained are log10 Ksp, Eu(OH)3o = − 23.94 ± 0.51 (1.96 SD) and log10βEu,H0 = − 7.49 ± 0.15 (1.96 SD).  相似文献   

5.
Incorporation of pH correction, in data obtained from the potentiometric titration of p-fluorobenzoylacetone with NaOH solution in dioxane-water (31,V/V) at 30±0.1°C in a medium of constant ionic strength, =0.1M (NaClO4) gave the value of thermodynamic dissociation constant (pk D ) as 12.06±0.02. Under similar conditions of solvent composition, temperature and ionic strength the thermodynamic stepwise formation constants of the complexes formed between Ni(II), Co(II), Zn(II) and Cd(II) ions and the above ligand, using method of least squares, gave log 2 as 19.50±0.05, 18.89±0.05, 18.61±0.04 and 16.16±0.08 resp. This order is in accordance with theIrving-Williams series. Derivatives of the above metals have also been synthesised and characterised.With 2 Figures  相似文献   

6.
Complexation equilibrium of metals by three humic acids of different origin with ultrafiltration method was investigated at pH 4 a 5 and ionic strength I = 0.1M NaClO4. Commercial (Aldrich) and two original humic acids (peat and soil, obtained by six step isolation process from the material from Trnava county, close to the NPP Jaslovské Bohunice) were used in this study. For the evaluation of the results, the model of metal ion charge neutralization upon humic acid functional group proposed by the Kim and Czerwinski was used. Complexation constants were calculated using the terms of this model (operational concentration, loading capacity). The values of log = 5.39±0.16 for yttrium, 6.15±0.16 for americium and 5.20±0.08 for lead were found. Correlation of free metal concentration and ratio of molar fraction of complexing functional groups confirms the validity of charge neutralisation model for metal and polyelectrolyte complexation study.  相似文献   

7.
The aquation of TcBr 6 2– in perchlorate solutions at various hydrogen ion concentrations and ionic strengths has been investigated. Although the same products form in all cases the proportions of the cationic and neutral products depend on the [H+] and the ionic strength. Differences in LiClO4/HClO4 and NaClO4/HClO4 can be attributed to differences in the activities, although at constant ionic strength. A rate constant of 1.75·10–5 s–1 was found for the aquation at =1, together with an activation energy of 101.6±12.5 kJ/mol.  相似文献   

8.
The molal dissociation quotients of D-galacturonic acid were measured potentiometrically in a newly-designed, hydrogen-electrode concentration cell from 5 to 100°C at four ionic strengths ranging from 0.1 to 1.0 mol-kg–1 using sodium trifluoromethanesulfonate (NaF3CSO3) as the supporting electrolyte. These quotients were fitted in the all anionic (isocoulombic) form by an empirical equation incorporating three adjustable parameters. When combined with the known dissociation quotient for water in the same medium, this treatment yielded the following thermodynamic quantities for the acid dissociation equilibrium at 25°C and infinite dilution: log KH=–3.490±0.011, H H 0 =0.4±0.2 kJ-mol–1, S H 0 =–65±1 J-mol–1-K–1, and C p, H 0 =–231±8 J-mol–1-K–1. Comparisons are made with the corresponding results of a limited number of previous studies carried out near ambient conditions.  相似文献   

9.
Reaction of Cd(II) ion with hypoxanthine (H2 Y) and with 6-mercaptopurine (H2 MP) in dioxane-water (50%) leads to the formation of CdY·2H2O and Cd(HMP)2·2H2O, respectively. In methanolic medium Cd(II) and H2 MP give Cd(MP)·H2O. These compounds have been characterized by chemical analysis, IR spectra and thermogravimetric analysis. The stability constant of CdY complex at 25±0.1 °C and 1M ionic strength with NaClO4 in dioxane-water medium is log =10.25±0.05.
Komplexbildung von Hypoxanthin und 6-Mercaptopurin mit Cd(II)
Zusammenfassung Die Umsetzung von Cd(II)-Ionen mit Hypoxanthin (H2 Y) und 6-Mercaptopurin (H2 MP) in Dioxan-Wasser (50%) ergibt die Verbindungen CdY·2H2O und Cd(HMP)2·2H2O. In Methanol entsteht aus Cd(II) und H2 MP CdMP·H2O. Die Verbindungen wurden durch chemische Analysen, IR-Spektren und thermogravimetrische Analysen charakterisiert. Die Stabilitätskonstante der Verbindung CdY bei 25°C und bei einer Ionenstärke = 1 (NaClO4) in Dioxan-Wasser wurde zu lg =10,25±0,05 bestimmt.
  相似文献   

10.
The concentration formation constants of phosphonoacetic acid (PAA) complexes with the Ca2+ and Mg2+ ions were determined in aqueous solution at 25°C by potentiometric and coulometric titrations at different ionic strengths and were extrapolated to I=0 in order to obtain thermodynamic values of the formation constants. Complexes were formed by the completely deprotonated K f (ML) and monoprotonated K f (MHL) forms of the PAA anion. The respective values for the complexes are: log K f (CaL)=4.68±0.03, log K f (CaHL)=2.61±0.08; log K f (MgL)=5.58±0.09, log K f (MgHL)=3.0±0.3. The enthalpy and entropy of complexation for the deprotonated Ca2+ and Mg2+ PAA species, determined from the temperature dependence of the log K f (ML), are: H0(Ca) =0.6±0.2 kcal-mol–1, S0(Ca)=21.4±0.6 cal-mol–1-K–1, H0(Mg)=3.0±0.7 kcal-mol–1, and S0(Mg)=35±2 cal-mol–1-K–1. It is seen there-fore, that the complexes are entropy stabilized but enthalpy destabilized. Formation constants were also determined for Ca2+ and Mg2+ complexes with PAA analogs, phosphonoformic and 3-phosphonopropionic acids and the complexation of PAA was also studied at a single ionic strength, with Na+, Ag+, Tl+, Sr2+, Ba2+, Cd2+, Cu2+, and Pb2+ ions.  相似文献   

11.
The protonation equilibria of nitrilotris(methylenephosphonic acid) (NTMP, H6L) and ethylenediaminetetrakis(methylenephosphonic acid) (EDTMP, H8L) complexes of scandium, yttrium, and lanthanoids have been studied potentiometrically at 25°C and at an ionic strength of 0.1 mol-dm–3 KNO3. The first protonation constants of NTMP complexes of lanthanoids, K MHL , decrease with decreasing of the ionic radius of the lanthanoid [log K MHL =7.82 (La3+) –6.90 (Lu3+)] and show a so-called Tetrad effect. The second protonation constants, K MH 2L, change very little with the lanthanoid metal ions (logK MH 2L=5.3–5.7). These results suggest that, in the first protonation process in ML, the proton attacks the nitrogen of NTMP rupturing the M-N of M(ntmp)3–. The pattern of the change in the protonation constants of the EDTMP complexes with the atomic number of the lanthanoid is quite different from that of the NTMP complexes. This fact indicates that the manner of protonation of the EDTMP complexes differs from that of NTMP complexes. The protonation constants of yttrium complexes of NTMP and EDTMP agree with those of lanthanoid complexes, whereas those of scandium complexes deviate from the values predicted from its ionic radius.  相似文献   

12.
Complex formation of humic acids (HA)n with La3+ and Eu3+ was studied. Commercial (HA)n was purified and characterized. The stability constants were determined at several pH values and 0.2?M NaClO4 ionic strength by the Shubert??s method of radiochemical ionic exchange. The slopes of the lines $ \log ((\lambda_{0} /\lambda ) - 1) = \log \beta_{\text{M,j(HA)n}}^{\exp } + {\text{j}} * \log \left[ { ( {\text{HA)}}_{\text{n}} } \right] $ were dependent on the [(HA)n]. The values of log $ \beta_{\text{M,j(HA)n}}^{\exp } $ for j?=?1 were the following: 6.29?±?0.04 (pH 4.9?±?0.4) and 7.61?±?0.03 (pH 5.9?±?0.1) for lanthanum and 7.31?±?0.01 (pH 5.9?±?0.2) for europium. Log $ \beta_{\text{M,j(HA)n}}^{\exp } $ was determined as well for higher values of the j parameter and these values were: 12.2?±?0.1 (j?=?2, pH 7.7?±?0.2), 15.6?±?0.2 (j?=?3, pH 4.9?±?0.4) and 16.05?±?0.07 (j?=?3, pH 5.9?±?0.1), for lanthanum and 13.18?±?0.03 (j?=?2, pH 5.9?±?0.1) for europium. A discussion is presented about the complex formation regarding pH and [(HA)n].  相似文献   

13.
Summary Cyanide ion reacts with [Fe(Par)2]2–,i.e. Par=4-(2-pyridylazo)resorcinol to form a 113 mixed cyanocomplex. The reaction has been studied spectrophotometrically at 720 nm max, pH=11.5±0.02, and I=0.1 M (NaClO4) at 25±0.1°C. The order with respect to cyanide varies from one to two at high and low cyanide concentrations respectively. The rate constants for respective reactions are k1=(6.1±0.3)×10–2 M–1 s–1, k2=(12.6±1.0) M–2 s–1. The reverse reaction does not occur at a measurable rate even in presence of a large excess of Par. These observations suggest that [Fe(Par)2]2– forms a mixed [FePar(CN)3]3– complex in presence of an excess of cyanide ion. The activation parameters for the reaction have been calculated and used to support a three step mechanism consistent with these results. The effect of ionic strength tends further support to the mechanism.  相似文献   

14.
Summary An equation for the surface potential 0 was used to define the surface dissociation constant of surface hydroxyls at a solid oxide/aqueous solution interface.Using the measurements of the surface charge, the Gouy-Chapman theory and crystallo-chemical data for oxides, the calculations of the surface dissociation constants have been carried out. The values of the acidic surface dissociation constants (in minus logarithmic scale) fall in range 8.7±0.8 at ionic strength 1 M and in the range 7.2±0.7 at 10–3 M KNO3 These constants exceed by 2 to 5 orders of magnitude the dissociation constants of M(OH) naq species in solution.With 1 table  相似文献   

15.
Reaction of Pu(VI) with Si(OH)4 (at concentration 0.004–0.025 mol l–1) in a 0.2 M NaClO4 solution at pH 3–8 is studied by spectrophotometric method. In the range of pH 4.5–5.5, PuO2(H2O)4OSi(OH)3 + complex is formed, while at pH > 6, PuO2(H2O)3O2Si(OH)2 or hydroxosilicate complex PuO2(H2O)3(OH)OSi(OH)3 is recorded. The equilibrium constants are calculated for the reactions of formation of PuO2(H2O)4OSi(OH)3 + and PuO2(H2O)3O2Si(OH)2 and their concentration stability constants: log K 1 = –3.91 ± 0.17 and log K 2 –10.5; log 1= 5.90 ± 0.17 and log 2 12.6. The PuO2(H2O)4OSi(OH)3 + complex is significantly less stable than analogous complex of U(VI). Calculations of the forms of Pu(VI) occurrence at the Si(OH)4 concentration equal to 0.002 mol l–1 showed that the maximum fraction of the PuO2(H2O)4OSi(OH)3 + complex is 10% (pH 6.5), while the fraction of PuO2(H2O)3O2Si(OH)2 is almost 40% (pH 8).  相似文献   

16.
The solubility of siderite (FeCO3) at 25°C under constant CO2 partial pressure [p(CO2)] was determined in NaCl solutions as a function of ionic strength. The dissolution of FeCO3(s) for the reaction
has been determined as a function of pH = – log[H+]. From these values we have determined the equilibrium constant for the stoichiometric solubility to FeCO3(s) in NaCl
These values have been fitted to the equation
with a standard error of s = 0.15. The extrapolated value of log(K o sp) – 10.9 in water is in good agreement with data in the literature (– 10.8 to – 11.2) determined in solutions of different composition and ionic strength.The measured values of the activity coefficient, T(Fe2+) T(CO3 2–), have been used to estimate the stability constant for the formation of the FeCO3 ion pair, K*(FeCO3). The values of K*(FeCO3) have been fitted to the equation (s = 0.09)
The value of log[K o(FeCO3)] in water found in this study (6.3 ± 0.2) is slightly higher than the value found from extrapolations in 1.0 m NaClO4 solutions (5.9 ± 0.2). These differences are related to the model used to determine the activity coefficients of the Fe(II) and carbonate species in the two solutions.  相似文献   

17.
The molal formation quotients for cadmium–malonate complexes were measured potentiometrically from 5 to 75°C, at ionic strengths of 0.1, 0.3, 0.6 and 1.0 molal in aqueous sodium trifluoromethanesulfonate (NaTr) media. In addition, the stepwise dissociation quotients for malonic acid were measured in the same medium from 5 to 100°C, at ionic strengths of 0.1, 0.3, 0.6, and 1.0 molal by the same method. The dissociation quotients for malonic acid were modeled as a function of temperature and ionic strength with empirical equations formulated such that the equilibrium constants at infinite dilution were consistent, within the error estimates, with the malonic acid dissociation constants obtained in NaCl media. The equilibrium constants calculated for the dissociation of malonic acid at 25°C and infinite dilution are log K 1a=-2.86 ± 0.01 and log K 2a=-5.71 ± 0.01. A single Cd–malonate species, CdCH2C2O4, was identified from the complexation study and the formation quotients for this species were also modeled as a function of temperature and ionic strength. Thermodynamic parameters obtained by differentiating the equation with respect to temperature for the formation of CdCH2C2O4 at 25°C and infinite dilution are: K = 3.45 ± 0.09, S° = 7 ± 6 kJ-mol-1, S° = 91 ± 22 J-K--mol-1, and C p o =400±300 J­K-1­mol-1.  相似文献   

18.
Potentiometric and cyclo-voltammetric studies have been carried out on monensin anion (Mon) complexes with the alkali ions as well as with Tl+ and Ag+ in absolute methanol solutions. The log Kf values obtained for the complexity constants and corrected for the activity effects are: Li+, 3.3±0.1; Na+, 6.72±0.05; K+, 5.18±0.05; Rb+, 4.58±0.05; Cs+, 3.75±0.05; Tl+, 5.31±0.05; Ag+, 8.2±0.2. It is seen that for the alkali, the most stable complex is formed with Na+. The enthalpy and entropy of complexation with the sodium ion were found to be Ho=–5.47±0.24 kcal-mole–1 and So=+12.4±0.7 e.u. The complex, therefore, is enthalpy and entropy stabilized.  相似文献   

19.
Using investigations of the copper(I)–1,10-phenanthroline system as an example, it is shown that thermal lensing can be used for determining stability constants at a level of concentrations one–two orders of magnitude lower compared to conventional spectrophotometry, with better precision of measurements. The values of stability constants are log2= 11.7 ± 0.7 without regard for stepwise chelation, and logK 1= 5.9 ± 0.3, logK 2= 5.4 ± 0.3, and log2= 11.3 ± 0.6 taking into account stepwise chelation. It is shown that, when shifting from microgram to nanogram amounts of reactants in the determination of stability constants by thermal lensing, changes in the kinetic parameters of the reaction studied should be taken into account. The thermal-lens limit of detection of copper(I) is 2 × 10–8M; the linear calibration range is 4 × 10–8–2 × 10–5M (488.0 nm, pump power 120 mW). The data obtained were used for determining copper(I) in the hydrogen sulfide layer of the Baltic Sea.  相似文献   

20.
Equilibria occurring between glycine (L) and magnesium(II) and calcium(II) were studied by measuring at 25 °C the electromotive force (e.m.f.) of the cell: (–) Pt, H2/SolutionS/R.E. (+) where R.E. is the reference electrode described in the text.Equilibria taking place in solutions containing iron(II) and glycine were investigated by means of the cell: (–) R.E./SolutionS/G.E. (+) where G.E. is the glass electrode. The general composition of solutionS was in both cases the following: B M inM 2+;H M in H+;A M inL; 3.00M in ClO 4 ; (3-H-2B)M in Na+.Experimental data were explained by assuming the existence of the species:: MgL(log 1,0,1=1.53±0.05); MgL 2(log 2,0,1=2.26±0.05); CaL(log 1,0,1==0.75±0.03); FeL(log 1,0,1=4.20±0.04).Protonation constants of aminoacetate, not known in the experimental conditions selected, were determined by means of e.m.f. measurements carried out with a H2 electrode.
Komplexbildung zwischen Glycin und Magnesium(II), Calcium(II), bzw. Eisen(II) bei 25 °C in 3,00M NaClO4
Zusammenfassung Die Gleichgewichte zwischen Glycin (L) und Magnesium(II) bzw. Calcium(II) wurden bei 25 °C durch E.M.K. Messungen der folgenden Meßkette untersucht: (–) Pt, H2/ProbenlösungS/R.E. (+) wobei R.E. Referenz-Elektrode bedeutet (siehe Text).Zum Studium der Reaktion zwischen Eisen(II) und Glycin bei 25 °C wurde folgende Meßkette benutzt: (–) R.E./ProbenlösungS/G.E. (+) wobei G.E. Glas-Elektrode bedeutet.Alle Meßproben hatten die folgende allgemeine Zusammensetzung:B M inM 2+;H M in H+;A M inL; 3,00M in ClO 4 ; (3-H-2B)M in Na+.Die experimentellen Daten konnten unter Annahme folgender Komplexe erklärt werden: MgL(log 1,0,1=1,53±0,05); MgL 2(log 2,0,1=2,26±0,05); CaL(log 1,0,1=0,75±0,03); FeL(log 1,0,1=4,20±0,04). Die Protonierungskonstanten von Aminoacetat, die bei den gewählten experimentellen Bedingungen nicht bekannt sind, wurden mittels E.M.K. Messungen (mit Wasserstoff-Elektrode) bestimmt.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号