首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies on the structure and physico-chemical properties of amyloid fibrils are important with regard to a better understanding of amyloid diseases such as Alzheimer’s. Insulin is used as a protein model which is easily driven toward amyloid formation. In the present study, five sets of 15 ns molecular dynamics simulations were performed on insulin in order to observe the initial structural changes that occur in the process of amyloid formation. Potential energy, RMSD, and secondary structure percentage of sampled structures were analyzed in all experiments. Common residues that undergo the first conformational changes were detected to be S9 and V10 of the A chain, as well as G8 and S9 of the B chain. The RMSD of truncated insulin increased much more than full-length insulin to about 18 Å. However, the beta-sheet structures percentage of full-length insulin, which is an indicative of amyloid formation, was higher than the truncated form in the presence of salt. This is indicative of the importance of the five residues of the B chain C-terminal in the insulin misfolding process. Overall, simulating full-length insulin under high temperature and in the presence of KCl could be used to assess amyloid formation and potential amyloid inhibitors of this protein.  相似文献   

2.
The self-assembly of peptides and proteins into beta-sheet-rich high-order structures has attracted much attention as a result of the characteristic nanostructure of these assemblies and because of their association with neurodegenerative diseases. Here we report the structural and conformational properties of a peptide-conjugated graft copolymer, poly(gamma-methyl-L-glutamate) grafted polyallylamine (1) in a water-2,2,2-trifluoroethanol solution as a simple model for amyloid formation. Atomic force microscopy revealed that the globular peptide 1 self-assembles into nonbranching fibrils that are about 4 nm in height under certain conditions. These fibrils are rich in beta-sheets and, similar to authentic amyloid fibrils, bind the amyloidophilic dye Congo red. The secondary and quaternary structures of the peptide 1 can be controlled by manipulating the pH, solution composition, and salt concentration; this indicates that the three-dimensional packing arrangement of peptide chains is the key factor for such fibril formation. Furthermore, the addition of carboxylic acid-terminated poly(ethylene glycol), which interacts with both of amino groups of 1 and hydrophobic PMLG chains, was found to obviously inhibit the alpha-to-beta structural transition for non-assembled peptide 1 and to partially cause a beta-to-alpha structural transition against the 1-assembly in the beta-sheet form. These findings demonstrate that the amyloid fibril formation is not restricted to specific protein sequences but rather is a generic property of peptides. The ability to control the assembled structure of the peptide should provide useful information not only for understanding the amyloid fibril formation, but also for developing novel peptide-based material with well-defined nanostructures.  相似文献   

3.
It is generally postulated that amyloid-beta-peptides play a central role in the progressive neurodegeneration observed in Alzheimer's disease. Important pathological properties of these peptides, such as neurotoxicity and resistance to proteolytic degradation, depend on the ability of amyloid-beta-peptides to form beta-sheet structures and/or amyloid fibrils. Amyloid-beta-peptides are known to aggregate spontaneously in vitro with the formation of amyloid fibrils. The intervention on the amyloid-beta-peptides aggregation process can be envisaged as an approach to stopping or slowing the progression of Alzheimer's disease. In the last few years a number of small molecules have been reported to interfere with the in vitro aggregation of amyloid-beta-peptides. Melatonin, a hormone recently found to protect neurons against amyloid-beta-peptide toxicity, interacts with amyloid-beta-peptide (1-40) and amyloid-beta-peptide (1-42) and inhibits the progressive formation of beta-sheet and/or amyloid fibrils. These interactions between melatonin and the amyloid peptides have been demonstrated by circular dichroism (CD) and electron microscopy for amyloid-beta-peptide (1-40) and amyloid-beta-peptide (1-42) and by nuclear magnetic resonance (NMR) spectroscopy for amyloid-beta-peptide (1-40). Our electrospray ionization mass spectrometric (ESI-MS) studies also proved that there is a hydrophobic interaction between amyloid-beta-peptide (1-40) and melatonin and the proteolytic investigations suggested that the interaction took place on the 29-40 amyloid-beta-peptide segment. The wide-ranging application of these results would provide further information and help in biological research.  相似文献   

4.
Congo red has been used to identify amyloid fibrils in tissues for more than 80 years and is also a weak inhibitor to both amyloid-beta fibril formation and toxicity. However, the specificity of the binding and its inhibition mechanism remain unclear. Using all-atom molecular dynamics simulations with the explicit solvent model, we have identified and characterized two specific binding modes of Congo red molecules to a protofibril formed by an amyloidogenic fragment (GNNQQNY) of the yeast prion protein Sup35. The observation of dual-mode was consistent with the experimentally observed dual-mode binding to Abeta fibrils by a series of compounds similar to Congo red. In the primary mode, Congo red bound to a regular groove formed by the first three residues (GNN) of the beta-strands along the beta-sheet extension direction. Comparative simulations demonstrated that Thioflavin T also bound to the grooves on KLVFFAE protofibril surface. Because of the ubiquitous long grooves on the amyloid fibril surface, we propose that this binding interaction could be a general recognition mode of amyloid fibrils by Congo red, Thioflavin T, and other long flat molecules. In the secondary mode, Congo red bound parallel to the beta-strands on the edge or in the middle of a beta-sheet. The primary binding mode of Congo red and GNNQQNY protofibril was more stable than the secondary mode by -5.7 kcal/mol as estimated by the MM-GBSA method. Detailed analysis suggests that the hydrophobic interactions play important roles for burial of the hydrophobic part of the Congo red molecules. Two potential inhibition mechanisms of disrupting beta-sheet stacking were inferred from the primary mode, which could be exploited for the development of non-peptidic amyloid-specific inhibitors.  相似文献   

5.
Biologically uncommon D-aspartyl (D-Asp) residues have been detected in proteins of various tissues of elderly humans. The presence of D-Asp has been explained as a result of the racemization of L-Asp (denoted as Asp) in the protein of inert tissues. We have previously suggested that the racemization of Asp may depend on the conformation of the peptide chain. However, the nature of the peptide conformation that affects the D-Asp formation has not yet been examined. Here we report the kinetics of Asp racemization in two model peptides, (Asp-Leu)(15) and (Leu-Asp-Asp-Leu)(8)-Asp, which form beta-sheet structures and alpha-helical structures, respectively. For the beta-sheet structures, the activation energy of racemization of Asp residues was 27.3 kcal mol(-1), the racemization rate constant at 37 degrees C was 2.14x10(-2) per year and the time required to reach a D/L ratio of 0.99 at 37 degrees C was 122.6 years as estimated from the Arrhenius equation. For the alpha-helical structures, the activation energy of racemization was 18.4 kcal mol(-1), the racemization rate constant 20.02x10(-2) per year and the time 13.1 year. These results suggest that Asp residues inserted in alpha-helical peptides are more sensitive to racemization than Asp residues inserted in peptides adopting beta-sheet structures. The results clearly indicate that the racemization rate of Asp residues in peptides depends on the secondary structure of the host peptide.  相似文献   

6.
Amyloid deposits are formed as a result of uncontrolled aggregation of (poly)peptides or proteins. Today several diseases are known, for example Alzheimer's disease, Creutzfeldt-Jakob disease, mad cow disease, in which amyloid formation is involved. Amyloid fibrils are large aggregates of beta-pleated sheets and here a general method is described to introduce molecular mutations in order to achieve disruption of beta-sheet formation. Eight backbone-modified amylin derivatives, an amyloidogenic peptide involved in maturity onset diabetes, were synthesized. Their beta-sheet forming properties were studied by IR spectroscopy and electron microscopy. Modification of a crucial amide NH by an alkyl chain led to a complete loss of the beta-sheet forming capacity of amylin. The resulting molecular mutated amylin derivative could be used to break the beta-sheet thus retarding beta-sheet formation of unmodified amylin. Moreover, it was found that the replacement of this amide bond by an ester moiety suppressed fibrillogenesis significantly. Introduction of N-alkylated amino acids and/or ester functionalities-leading to depsipeptides-into amyloidogenic peptides opens new avenues towards novel peptidic beta-sheet breakers for inhibition of beta-amyloid aggregation.  相似文献   

7.
At low pH insulin is highly prone to self-assembly into amyloid fibrils. The process has been proposed to be affected by the existence of secondary nucleation pathways, in which already formed fibrils are able to catalyze the formation of new fibrils. In this work, we studied the fibrillation process of human insulin in a wide range of protein concentrations. Thioflavin T fluorescence was used for its ability to selectively detect amyloid fibrils, by mechanisms that involve the interaction between the dye and the accessible surface of the fibrils. Our results show that the rate of fibrillation and the Thioflavin T fluorescence intensity saturate at high protein concentration and that, surprisingly, the two parameters are proportional to each other. Because Thioflavin T fluorescence is likely to depend on the accessible surface of the fibrils, we suggest that the overall fibrillation kinetics is mainly governed by the accessible surface, through secondary nucleation mechanisms. Moreover, a statistical study of the fibrillation kinetics suggests that the early stages of the process are affected by stochastic nucleation events.  相似文献   

8.
The beta-amyloid (Abeta) deposition, which is the conversion of soluble Abeta peptides to insoluble plaques on a surface, is an essential pathological process in Alzheimer's disease (AD). The identification and characterization of possible environmental factors that may influence amyloid deposition in vivo are important to unveil the underlying etiology of AD. According to the amyloid cascade hypothesis, diffuse plaques are initial and visual deposits in the early event of AD, leading to amyloid plaques. To study amyloid deposition and growth in vitro, we prepared a synthetic template by immobilizing Abeta seeds on an N-hydroxysuccinimide ester-activated solid surface. According to our analysis with an ex situ atomic force microscope, the formation of amyloid plaque-like aggregates was mediated by the interaction between Abeta in a solution and on a synthetic template, suggesting that Abeta oligomers function well as seeds for amyloid deposition. It was observed that insoluble amyloid aggregates formed on the template surface serve as a sink of soluble Abeta in a solution as well as mediate the formation of intermediates in the pathway of amyloid fibrillization in a solution. Relative seeding efficiencies of fresh monomers, oligomers, and fully grown fibrils were analyzed by measuring the deposited plaque volume and its height distribution through atomic force microscopy. The result revealed that oligomeric forms of Abeta act more efficiently as seeds than monomers or fibrils do. Fluorescence spectroscopy with thioflavin T confirmed that amyloid aggregate formation proceeds in a concentration-dependent manner. Analysis with Fourier transform infrared spectroscopy indicated a progressive transition of soluble Abeta42 monomer to amyloid fibrils having antiparallel beta-sheet structure on the template. Furthermore, studies on the interaction between Abeta40 and 42, two major variants of Abeta derived from the amyloid precursor protein, showed that amyloid aggregate formation on the surface was accelerated further by the homogeneous association of soluble Abeta42 onto Abeta42 seeds than by other combinations. A slightly acidic condition was found to be unfavorable for amyloid formation. This study gives insight into understanding the effects of environmental factors on amyloid formation via the use of a synthetic template system.  相似文献   

9.
Effects of copper salts containing different anions (SO(4)(2)(-), Cl(-), and NO(3)(-)) on the self-assembly of a designed peptide EAK16(II)GGH with affinity for Cu(2+) have been investigated. The peptide secondary structure, self-assembled nanostructures, and surface activity were observed to depend strongly on the type of anion. Over a salt concentration range from 0.05 to 10.0 mM, SO(4)(2)(-) induced long fiber formation, whereas Cl(-) and NO(3)(-) caused short fiber formation. The fiber length increased with copper sulfate concentration, but the concentration of copper chloride and copper nitrate did not affect the peptide nanostructures significantly. Analysis by Fourier transform infrared spectroscopy (FTIR) revealed that the addition of the copper salts tended to cause the peptide conformation to change from alpha-helix/random coil to beta-sheet, the extent to which depended on the anion type. This evidence of the anion effect was also supported by surface tension measurements using the axisymmetric drop shape analysis-profile (ADSA-P) technique. An explanation for the effect of anions on the peptide self-assembly was proposed. The divalent anion SO(4)(2)(-) might serve as a bridge by electrostatically interacting with two lysine residues from different peptide molecules, promoting beta-sheet formation. The extensive beta-sheet formation may further promote peptide self-assembly into long fibers. On the other hand, monovalent anions Cl(-) and NO(3)(-) may only electrostatically interact with one charged residue of the peptide; hence, a mixed secondary structure of alpha-helix/random coil and beta-sheet was observed. This observation might explain the predominant formation of short fibers in copper chloride and copper nitrate solutions.  相似文献   

10.
We present the 2D self-assembly properties of an amyloid-like peptide (LSFDNSGAITIG-NH2) (i.e., LSFD) over a whole range of spatial scales. This peptide is known to adopt an amyloid-like behavior in water where it aggregates into fibrils. Monolayers of this 12 amino acid peptide were built by direct spreading and compression of an organic unstructured LSFD solution at the air/water interface. Investigation by infrared spectroscopy of the peptide secondary structure reveals beta-sheet formation at the water surface. As evidenced by Brewster angle microscopy, compression of the peptidic film results in the formation of large condensed domains. We used atomic force microscopy to show that these domains are made of rather monodisperse, elongated domains of monomolecular thickness, which are about 1 microm long and hundred of nanometers wide. These nanodomains can be compacted up to the formation of a homogeneous monolayer on the micrometer scale. These bidimensional structures appear as a surface-induced counterpart of the bulk amyloid fibrils that do not form at the air/water interface. These self-assembled peptide nanostructures are also very promising for building organized nanomaterials.  相似文献   

11.
A new approach for studying a peptide conformation of amyloid fibril has been developed. It is based on infrared linear dichroism analysis using an IR-microscope for aligned amyloid fibril. The polarization directions of amide I and II bands were perpendicular similarly for beta2-microglobulin and its #21-31 peptide. Furthermore, this approach has shown that the #21-31 peptide consists of two C=O bonds in the beta-sheet that makes 0 degrees with the fibril axis, three C=O bonds in the beta-sheet inclined by 27 degrees with respect to the fibril axis, four residues in the random coil by 47 degrees , and two residues in possible beta-bulge structure by 32 degrees . Plausible structures of the amyloid core in the fibril are proposed by taking account of these results.  相似文献   

12.
Protein fibril formation is implicated in many diseases, and therefore much effort has been focused toward the development of inhibitors of this process. In a previous project, a monomeric protein was computationally engineered to bind itself and form a heterodimer complex following interfacial redesign. One of the protein monomers, termed monomer-B, was unintentionally destabilized and shown to form macroscopic fibrils. Interestingly, in the presence of the designed binding partner, fibril formation was blocked. Here we describe the complete characterization of the amyloid properties of monomer-B and the inhibition of fiber formation by the designed binding partner, monomer-A. Both proteins are mutants of the betal domain of streptococcal protein-G. The free monomer-B protein forms amyloid-type fibrils, as determined by transmission electron microscopy and the change in fluorescence of Thioflavin T, an amyloid-specific dye. Fibril formation kinetics are influenced by pH, protein concentration, and seeding with preformed fibrils. Under all conditions tested, monomer-A was able to inhibit the formation of monomer-B fibrils. This inhibition is specific to the engineered interaction, as incubation of monomer-B with wild-type protein-G (a structural homologue) did not result in inhibition under the same conditions. Thus, this de novo-designed heterodimeric complex is an excellent model system for the study of protein-based fibril formation and inhibition. This system provides additional insight into the development of pharmaceuticals for amyloid disorders, as well as the potential use of amyloid fibrils for self-assembling nanostructures.  相似文献   

13.
Surface-induced aggregation is a common instability during protein storage, delivery and purification. This aggregation can lead to the formation of fibrils rich in intermolecular beta-sheet structure. Techniques to probe surface-clustering are limited. Here we use protein intrinsic fluorescence and thioflavin T probe fluorescence in a total internal reflection fluorescence (TIRF) sampling geometry to simultaneously monitor the kinetics of adsorption and aggregation for chicken egg lysozyme on a silica surface. We observe a slow surface-induced aggregation process that continues well after the lysozyme adsorption kinetics have plateaued. The rate of surface-induced aggregation is independent of the lysozyme concentration in solution. Consistent with the clustering observed via thioflavin T fluorescence, infrared amide I band spectra also show a 1.5-fold increase in intermolecular beta-sheet content upon lysozyme adsorption. Tryptophan emission spectra show no evidence for any tertiary structural change upon adsorption. Furthermore, we observe that the covalent modification of lysozyme with a single poly(ethylene glycol) (PEG) grafted chain does not inhibit aggregation on the surface, but a second PEG graft significantly inhibits the intermolecular beta-sheet formation.  相似文献   

14.
It is well established that the formation of transthyretin (TTR) amyloid fibrils is linked to the destabilization and dissociation of its tetrameric structure into insoluble aggregates. Isotope labeling is used for the study of TTR by NMR, neutron diffraction, and mass spectrometry (MS). Here MS, thioflavin T fluorescence, and crystallographic data demonstrate that while the X‐ray structures of unlabeled and deuterium‐labeled TTR are essentially identical, subunit exchange kinetics and amyloid formation are accelerated for the deuterated protein. However, a slower subunit exchange is noted in deuterated solvent, reflecting the poorer solubility of non‐polar protein side chains in such an environment. These observations are important for the interpretation of kinetic studies involving deuteration. The destabilizing effects of TTR deuteration are rather similar in character to those observed for aggressive mutations of TTR such as L55P (associated with familial amyloid polyneuropathy).  相似文献   

15.
Many unrelated proteins and peptides can assemble into amyloid or amyloid-like nanostructures, all of which share the cross-beta motif of repeat arrays of beta-strands hydrogen-bonded along the fibril axis. Yet, paradoxically, structurally polymorphic fibrils may derive from the same initial polypeptide sequence. Here, solid-state nuclear magnetic resonance (SSNMR) analysis of amyloid-like fibrils of the peptide hIAPP 20-29, corresponding to the region S (20)NNFGAILSS (29) of the human islet amyloid polypeptide amylin, reveals that the peptide assembles into two amyloid-like forms, (1) and (2), which have distinct structures at the molecular level. Rotational resonance SSNMR measurements of (13)C dipolar couplings between backbone F23 and I26 of hIAPP 20-29 fibrils are consistent with form (1) having parallel beta-strands and form (2) having antiparallel strands within the beta-sheet layers of the protofilament units. Seeding hIAPP 20-29 with structurally homogeneous fibrils from a 30-residue amylin fragment (hIAPP 8-37) produces morphologically homogeneous fibrils with similar NMR properties to form (1). A model for the architecture of the seeded fibrils is presented, based on the analysis of X-ray fiber diffraction data, combined with an extensive range of SSNMR constraints including chemical shifts, torsional angles, and interatomic distances. The model features a cross-beta spine comprising two beta-sheets with an interface defined by residues F23, A25, and L27, which form a hydrophobic zipper. We suggest that the energies of formation for fibril form containing antiparallel and parallel beta-strands are similar when both configurations can be stabilized by a core of hydrophobic contacts, which has implications for the relationship between amino acid sequence and amyloid polymorphism in general.  相似文献   

16.
The self-assembly of beta-sheet peptide domains resulting in the formation of fibrillar aggregates (amyloids) is a feature of various neurodegenerative disorders. In order to evaluate mass spectrometric methods for the characterization of intermolecular beta-sheet structures the hydrogen/deuterium exchange behaviour of model peptides DPKGDPKG-(VT)(n)-GKGDPKPD-amide (n = 3,4,5,6,7,8), (VT)(n)-peptides, composed of a central beta-sheet-forming domain and N- and C-terminal nonstructured octapeptide sequences, was measured by electrospray ionization mass spectrometry (ESI-MS) and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The kinetic analysis of the hydrogen/deuterium exchange (HX) shows that intermolecular beta-sheet structures contain slowly exchanging protons (k 相似文献   

17.
Effect(s) of organic solvents on an all beta-sheet protein are investigated to understand the influence of backbone conformation on protein aggregation. Results obtained in the present study reveal that protein aggregation is accompanied by the formation of non-native beta-sheet conformation. In contrast, induction of non-native helical segments in the protein is found to inhibit aggregation. The differential effects of the secondary structures on protein aggregation are proposed to stem from the disparity in the nature of the hydrogen bonds and packing of the side chains of hydrophobic residues in the beta-sheet and alpha-helix conformation. In our opinion, the results of the present study provide useful hints to develop methods to alleviate the problems of both in vitro and in vivo protein aggregation.  相似文献   

18.
H alpha chemical shifts are often used as indicators of secondary structure formation in protein structural analysis and peptide folding studies. On the basis of NMR analysis of model beta-sheet and alpha-helical peptides, together with a statistical analysis of protein structures for which NMR data are available, we show that although the gross pattern of H alpha chemical shifts reflects backbone torsion angles, longer range effects from distant amino acids are the dominant factor determining experimental chemical shifts in beta-sheets of peptides and proteins. These show context-dependent variations that aid structural assignment and highlight anomalous shifts that may be of structural significance and provide insights into beta-sheet stability.  相似文献   

19.
Typical biopolymers exhibit structures and order on different length scales. By contrast, the number of synthetic polymers with a similar degree of hierarchical structure formation is still limited. Starting from recent investigations on the structures of amyloid proteins as well as research activities toward nanoscopic scaffolds from synthetic oligopeptides and their polymer conjugates, a general strategy toward hierarchically structured pi-conjugated polymers can be developed. The approach relies on the supramolecular self-assembly of diacetylene macromonomers based on beta-sheet forming oligopeptides equipped with hydrophobic polymer segments. Polymerization of these macromonomers proceeds under retention of the previously assembled hierarchical structure and yields pi-conjugated polymers with multi-stranded, multiple-helical quaternary structures.  相似文献   

20.
A structural model of amyloid fibril formed by the #21-31 fragment of beta2-microglobulin is proposed from microscope IR measurements on specifically 13C-labeled peptide fibrils and Raman spectra of the dispersed fibril solution. The 13C-shifted amide frequency indicated the secondary structure of the labeled residues. The IR spectra have demonstrated that the region between F22 and V27 forms the core part with the extended beta-sheet structure. Raman spectra indicated the formation of a dimer with a disulfide bridge between C25 residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号