首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The activation energy for the tracer diffusion of Co2+ ions in multielectrolyte systems containing alkali bromides has been determined in agar gel medium over the temperature range of 25–45°C. The decrease in the value of the Arrhenius parameters, E and Do, with gel percentage is explained on the basis of the transition state theory. Further, studies of the influence of electrolyte concentration on activation energy and obstruction effect reveal that both parameters decrease with the former. The decrease in activation energy is explained by considering the changes in physical properties of the solution with concentration at microscopic level, while the decrease in the extent of obstruction effect is attributed to competitive hydration between ions and agar molecules in a diffusion system.  相似文献   

2.
Co+Ni mixed oxides on Ni substrate were prepared through anodic electrodeposition from Co(NO3)2 and Ni(NO3)2 aqueous solutions with five different Co2+/Ni2+ ratios beside only Co2+. By the electrochemical measurements, the optimum performance in electrocatalytic activity for oxygen evolution reaction in alkaline media was obtained on the Co+Ni mixed oxide deposited from the solution containing Co2+/Ni2+ ratio of 1:1. The mixed oxide is corresponding to about 68 at% Co contents with spinel-type NiCo2O4 phase and porosity surface structure. The electrochemical kinetic parameters including exchange current density, Tafel slopes, reaction order with respect to [OH] and standard electrochemical enthalpy of activation were analyzed also. A possible mechanism involving the formation of a physisorbed hydrogen peroxide intermediate in a slow electrochemical step was presented, which accounts for the values of the experimental results.  相似文献   

3.
The obstruction effect and activation enerqy for the self-diffusion of Co2+ ions in CoSO4 have been computed using the zone-diffusion technique in agar gel medium at five different concentrations of the electrolyte. Both parameters are found to decrease with an increase in electrolyte concentration. The decrease in obstruction effect expressed in terms of is attributed to the competitive hydration between ions and agar molecules in a diffusion system while the decrease in activation energy is explained by considering the changes in the physical properties of the solution with concentration at microscopic level.  相似文献   

4.
Thermolysis of cyano complexes. VII. On the thermal decomposition of hexacyanocobaltate(III); ligand exchange during thermolysis The thermal decomposition of hexacyanocobaltates(III) yields, as products of successive intramolecular redox reactions, first dicyan and CoII(CoIII)-complexes, then CoII[CoII]-complexes and simple CoII(CN)2, respectively, and finally CoICN and elemental Co, respectively. All the compounds of the [CoIII(NH3)6]3+ cation with the cyanometallate anions of Co, Fe, Cr, Mn, Ni, Mo yield the same DTA curve as [Co(NH3)6][Co(CN)6] does; in the case of Ni and Cr, which are capable of forming ammine complexes, simultaneous mutual ligand exchange occurs.  相似文献   

5.
Four new complexes of 2,3,4-trimethoxybenzoic acid anion with manganese(II), cobalt(II), nickel(II) and copper(II) cations were synthesized, analysed and characterized by standard chemical and physical methods. 2,3,4-Trimethoxybenzoates of Mn(II), Co(II), Ni(II) and Cu(II) are polycrystalline compounds with colours typical for M(II) ions. The carboxylate group in the anhydrous complexes of Mn(II), Co(II) and Ni(II) is monodentate and in that of Cu(II) monohydrate is bidentate bridging one. The anhydrous complexes of Mn(II), Co(II) and Ni(II) heated in air to 1273 K are stable up to 505–517 K. Next in the range of 505–1205 K they decompose to the following oxides: Mn3O4, CoO, NiO. The complex of Cu(II) is stable up to 390 K, and next in the range of 390–443 K it loses one molecule of water. The final product of its decomposition is CuO. The solubility in water at 293 K is of the order of 10–3 mol dm–3 for the Mn(II) complex and 10–4 mol dm–3 for Co(II), Ni(II) and Cu(II) complexes. The magnetic moment values of Mn2+, Co2+, Ni2+ and Cu2+ ions in 2,3,4-trimethoxybenzoates experimentally determined in the range of 77–300 K change from 5.64–6.57 μB (for Mn2+), 4.73–5.17 μB (for Co2+), 3.26–3.35 μB (for Ni2+) and 0.27–1.42 μB (for Cu2+). 2,3,4-Trimethoxybenzoates of Mn(II), Co(II) and Ni(II) follow the Curie–Weiss law, whereas that of Cu(II) forms a dimer.  相似文献   

6.
Self-diffusion of Co2+ ions in CoBr2 and CoI2 is reported in the concentration range of 10–5 to 0.25M in 1% agar gel at 25 °C. The deviations observed between the experimental and theoretical values of diffusion coefficients are explained by considering different types of interactions occurring in the ion-gel water system. The applicability of the transition state theory to the diffusion of ZnSO4 in agar gel medium is tested by varying the temperature as well as the gel concentration at high concentration of the electrolyte. The activation energy E and D 0 value decrease with increasing gel concentration in agreement with the theory.  相似文献   

7.
Crystalline cesium nitratometalates(II), Cs2[M(NO3)4] (M = Mn ( I ), Co ( II ), Ni ( III ), and Zn ( IV )) were synthesized from M(NO3)2 · n H2O and CsNO3 by heating at 80–120 °C over 10–12 h. According to X-ray crystal structure analysis, the compounds are built from Cs+ cations and [M(NO3)4]2– anions. The latter differ by the type of metal coordination: a dodecahedron for Mn in I (CN = 8, rMn–O 2.24–2.37 Å), a seven coordination for Co in II (CN = 4 + 3, rCo–O 2.03–2.16 Å and 2.21–2.35 Å) and a tetrahedral distorted dodecahedron for Zn in IV (CN = 4 + 4, rZn–O 1.98–2.15 Å and 2.38–2.72 Å). Ni atom in III has a distorted octahedral NiO6 environment provided by two unidentate and two bidentate NO3 groups with Ni–O distances of 2.01–2.14 Å. The differences in metal coordination are discussed in terms of valence electron configurations, ionic radii, and the packing effects.  相似文献   

8.
The complexes of 4-chloro-2-methoxybenzoic acid anion with Mn2+, Co2+, Ni2+, Cu2+ and Zn2+ were obtained as polycrystalline solids with general formula M(C8H6ClO3)2·nH2O and colours typical for M(II) ions (Mn – slightly pink, Co – pink, Ni – slightly green, Cu – turquoise and Zn – white). The results of elemental, thermal and spectral analyses suggest that compounds of Mn(II), Cu(II) and Zn(II) are tetrahydrates whereas those of Co(II) and Ni(II) are pentahydrates. The carboxylate groups in these complexes are monodentate. The hydrates of 4-chloro-2-methoxybenzoates of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) heated in air to 1273 K are dehydrated in one step in the range of 323–411 K and form anhydrous salts which next in the range of 433–1212 K are decomposed to the following oxides: Mn3O4, CoO, NiO and ZnO. The final products of decomposition of Cu(II) complex are CuO and Cu. The solubility value in water at 293 K for all complexes is in the order of 10–3 mol dm–3. The plots of χM vs. temperature of 4-chloro-2-methoxybenzoates of Mn(II), Co(II), Ni(II) and Cu(II) follow the Curie–Weiss law. The magnetic moment values of Mn2+, Co2+, Ni2+ and Cu2+ ions in these complexes were determined in the range of 76−303 K and they change from: 5.88–6.04 μB for Mn(C8H6ClO3)2·4H2O, 3.96–4.75 μB for Co(C8H6ClO3)2·5H2O, 2.32–3.02 μB for Ni(C8H6ClO3)2·5H2O and 1.77–1.94 μB for Cu(C8H6ClO3)2·4H2O.  相似文献   

9.
A series of heterometallic 3d–Gd3+ complexes based on a lanthanide metalloligand, [M(H2O)6][Gd(oda)3] ? 3 H2O [M=Cr3+ ( 1‐Cr )] (H2oda=2,2′‐oxydiacetic acid), [M(H2O)6][MGd(oda)3]2 ? 3 H2O [M=Mn2+ ( 2‐Mn ), Fe2+ ( 2‐Fe ) and Co2+ ( 2‐Co )], and [M3Gd2(oda)6(H2O)6] ? 12 H2O [M=Ni2+ ( 3‐Ni ), Cu2+ ( 3‐Cu ), and Zn2+ ( 3‐Zn )], are reported. Magnetic and heat‐capacity studies revealed a significant impact on the magnetocaloric effect depending on the anisotropy of the 3d transition metal ions, as confirmed by comparison of the observed maximum values of ?ΔSm between complexes 2‐Co and 1‐Cr . In these two complexes, the 3d metal ions have the same spin (S=3/2 for Co2+ and Cr3+ ions), and the theoretical calculation suggested a larger ?ΔSm value for 2‐Co (47.8 J K?1 kg?1) than 1‐Cr (37.5 J K?1 kg?1); however, the significant anisotropy of Co2+ ions in 2‐Co , which can result in smaller effective spins, gives a smaller value of ?ΔSm for 2‐Co (32.2 J K?1 kg?1) than for 1‐Cr (35.4 J K?1 kg?1) at ΔH=9 T.  相似文献   

10.
Tracer-diffusion coefficients of Co2+ ions have been determined in 1% agar gel containing transition metal chlorides, viz. ZnCl2, NiCl2 and MnCl2 over the concentration range of 10–6–0.15 M at 25°C using the zone-diffusion technique. The results are compared with calculated values on the basis of Onsager's theory and the deviations are accounted for on the basis of various types of interactions in the ion-gel water system. Further, activation energy for the tracer-diffusion of Co2+ ions in the above mentioned electrolytes has been obtained as a function of electrolyte concentration, using measurements in the temperature range of 25–50°C. The trend in activation energy is explained on the basis of the WANG's model.  相似文献   

11.
The cathode materials of the composition LiNi1 − 2x Co x Mn x O2 (x = 0.1, 0.2. 0.33) synthesized from the Ni, Co, Mn mixed hydroxides and LiOH by using mechanical activation method are studied. It is shown that all synthesized compounds have layered structure described by the space group R-3m. With the decreasing of the nickel content the cell volume and the degree of structure disordering decrease. According to XPS data, the electronic main state of d-ions at the prepared samples’ surfaces corresponds to Ni2+, Co3+, and Mn4+. An increase in the nickel content leads to the increase of the Ni2p 3/2 and Co2p 3/2 binding energy, which points to the change in the Me-O bond covalence. According to magnetic susceptibility measurements data, the nickel ions in LiNi0.6Co0.2Mn0.2O2 exist in the two oxidation states: Ni2+ and Ni3+. It is shown that this sample has the highest specific discharge capacity (∼170 mAh/g). The positions of redox peaks in the differential capacitance curves depend on the sample composition: with the increasing of nickel content they are shifted toward lower voltages. Based on the paper presented in the IX International Conference “Basic Problems of Energy Conversion in Lithium Electrochemical Systems” (Ufa, 2006).  相似文献   

12.
Density functional theory (B3LYP, B3LYP-D3, wB97XD, M062X, and M06L) and ab initio methods (MP2 and CCSD(T)) in conjunction with 6-31+G(d,p) and LanL2DZ were employed to investigate the interaction energies between [Co(NH3)5NO2]2+ linkage isomers and chloride and nitrate in both gas phase and solid state. The nature of the chemical bonding has been analyzed by means of the atoms in molecules, electron density shift, natural bond orbitals, symmetry adapted perturbation theory, and energy decomposition analysis. The electronic structures of the two lowest laying singlet states (So and S1) of [Co(NH3)5NO2](NO3)Cl isomers were also investigated using CASSCF(6,6) with LanL2DZ and 6-31G(d) basis sets. Our results show that [Co(NH3)5NO2]2+ linkage isomers interact more strongly with chloride than nitrate. The structures of [Co(NH3)5NO2](NO3)Cl linkage isomers and their relative stabilities were examined in gas phase and in solid state and confirmed the nitro-complex as the most stable following by a viable intermediate endo-complex. Study of the nitro-nitrito linkage isomerization in [Co(NH3)5NO2](NO3)Cl revealed that anions form strong electrostatic bonds with [Co(NH3)5NO2]2+ leading to decrease in an activation energy compared to the [Co(NH3)5ONO]2+ isomers. A concerted action of ionic interactions and hydrogen bonds are suspected of regulating the isomerization in solid state. Assessment of various DFT methods with respect to CCSD(T) suggests M062X suitable method for [Co(NH3)5NO2](NO3)Cl linkage-isomerization study. Potential energy surface calculations at the CASSCF/6-31G(d) level of theory shows that the conical intersection (S1/So) might play an important role in the photoisomerization of [Co(NH3)5NO2](NO3)Cl.  相似文献   

13.
Doping of crystalline /CoEDTA/2 Ba and /Co(en)3/(NO3)3 by60Co2+ creates a thermodynamically dissipative structure which gives rise to an oscillatory exchange of the radiocobalt with the inactive Co/III/ of the complex ions. The same compounds in which energetic60Co atoms have been produced by neutron irradiation show kinetically the same oscillatory parameters. The Volterra-Lotka model is applied for the oscillations.  相似文献   

14.
Cobalt–silicon mixed oxide materials (Co/Si=0.111, 0.250 and 0.428) were synthesised starting from Co(NO3)2·6H2O and Si(OC2H5)4 using a modified sol–gel method. Structural, textural and surface chemical properties were investigated by thermogravimetric/differential thermal analyses (TG/DTA), XRD, UV–vis, FT-IR spectroscopy and N2 adsorption at −196 °C. The nature of cobalt species and their interactions with the siloxane matrix were strongly depending on both the cobalt loading and the heat treatment. All dried gels were amorphous and contained Co2+ ions forming both tetrahedral and octahedral complexes with the siloxane matrix. After treatment at 400 °C, the sample with lowest Co content appeared amorphous and contained only Co2+ tetrahedral complexes, while at higher cobalt loading Co3O4 was present as the only crystalline phase, besides Co2+ ions strongly interacting with siloxane matrix. At 850 °C, in all samples crystalline Co2SiO4 was formed and was the only crystallising phase for the nanocomposite with the lowest cobalt content. All materials retained high surface areas also after treatments at 600 °C and exhibited surface Lewis acidity, due to cationic sites. The presence of cobalt affected the textural properties of the siloxane matrix decreasing microporosity and increasing mesoporosity.  相似文献   

15.
Osmotic coefficients for Mn(NO3)2, Co(NO3)2, Ni(NO3)2, Cu(NO3)2, Zn(NO3)2, and Mg(NO3)2 in aqueous solution have been determined by the isopiestic method at 25°C, and activity coefficients have been derived. The results agree with the literature data for Zn(NO3)2, while they are significantly different for Co(NO3)2, Cu(NO3)2, and Mg(NO3)2, and those for Mn(NO3)2 and Ni(NO3)2 are new. The concentration dependence of the osmotic coefficients for the bivalent metal nitrates is similar to that for the trifluoroacetates, while it differs from those for the other salts of the same series of metals. The results are discussed in terms of the inner-sphere and outer-sphere association of ions, auxiliary information being derived from the concentration effects in the visible spectra of the coloured metal nitrates.  相似文献   

16.
《Electroanalysis》2017,29(5):1286-1293
A unipolar pulse electrodeposition method was employed to controllably synthesize nanosheet type NiCo LDH. The effect of concentration rate of Ni(NO3)2/Co(NO3)2 preparation solution on crystalline structure, morphology and supercapacitive performance was investigated systematically. Experimental found that the morphology and composition of NiCo LDH was highly depend on the Ni2+/Co2+ molar ratios of preparation solution; and the obtained Ni0.76Co0.24 LDH materials showed small nanosheet size and uniform distribution on carbon fiber electrode. Ni0.76Co0.24 LDH electrode was evaluated for supercapacitor application, which revealed a high specific capacitances of 2189.8 and 1908.8 F g−1 at the current density of 1 and 30 A g−1 respectively and a good cycle stability, retaining 70.3 % of the initial capacitance after 20000 charge and discharge cycles at 50 A g−1. Moreover, the Ni0.76Co0.24 LDH electrode exhibits a high energy density of 76 Wh Kg−1 at a power density of 250 W Kg−1 and a high power density of 7500 W Kg−1 at energy density of 66 Wh Kg−1. The as‐prepared Ni0.76Co0.24 LDH as positive electrode for asymmetric supercapacitor exhibits excellent energy density of 4.1 Wh Kg‐1 at a power density of 4000 W Kg‐1  相似文献   

17.
The coordination compound [Co(urea)6](NO3)2 was synthesized and physico-chemically characterized. The thermal decomposition carried out in dynamic air and inert atmosphere under non-isothermal conditions has been investigated by means of combined thermogravimetry/mass spectrometry, X-ray diffraction, IR and UV-VIS spectroscopy as well as magnetic measurements. The course of the thermal decomposition starts with two-phase transitions (melting and a Oh→Tdconfiguration change of the Co2+ ion) and continues with seven mass loss steps. According to the thermogravimetric and magnetic investigations a dimeric compound, [Co(biuret)(NCO)]2(NO3)2, is assumed to arise. Up ~250°C, an oxohydroxide nitrate intermediate is formed and a gradual oxidation of the Co2+ ions is observed. At 550°C, Co3O4 with mean crystallite sizes of ~150 Ĺ is identified. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
A hexanuclear heterometallic cluster of composition [Dy2Co4(L)4(NO3)2(OH)4(C2H5OH)2] ⋅ 2 C2H5OH ( 1 ) was synthesized by employing a Schiff base 2-(((2-hydroxy-3-methoxybenzyl) imino)methyl)-4-methoxyphenol (H2L) as ligand and utilizing Dy(NO3)3 ⋅ 6H2O and Co(NO3)2 ⋅ 6H2O as metal ion sources. X-ray single-crystal diffraction analysis indicated that complex 1 contains a defect tetracubane core and possesses central symmetric structure, with two DyIII ions being in the central body position of the molecule and four CoII ions being arranged at the outer sites. Magnetic studies reveal that complex 1 behaves as single-molecule magnet (SMM) with energy barrier of 27.50 K. To investigate the individual contribution of DyIII and CoII ions to the SMM behavior, another two complexes of formulae [Dy2Zn4(L)4(NO3)2(OH)4] ⋅ 4CH3OH ( 2 ) and [Y2Co4(L)4(NO3)2(OH)4(C2H5OH)2] ⋅ 2 C2H5OH ( 3 ) were prepared. Complexes 1 and 3 are isomorphous. The coordination geometries of DyIII ions in 1 and 2 are different. The DyIII ions are eight-coordinated in 2 and nine-coordinated in 1 . Complex 2 exhibits SMM behavior with energy barrier of 69.67 K, but complex 3 does not display SMM property. These results reveal that the SMM behaviors of 1 and 2 are mainly originated from DyIII ions. It might be the higher symmetry of DyIII ions in 2 that results in the higher energy barrier.  相似文献   

19.
The isomorphous single crystals of M(ethylenediamine)3(NO3)2, where M is Zn(II), Ni(II) and Co(II), exhibit macroscopic optical activity as predicted by their acentric space group. Axial circular dichroism measurements on these pure crystals show conclusively that spontaneous resolution has occurred. The axial circular dichroism and orthoaxial linear dichroism spectra of these pure crystals, and of Cu(II), Ni(II), Co(II), Mn(II) and Ru(II) doped into the Zn(en)3(NO3)2 crystal have been measured at ambient and cryogenic temperatures in the range from 7 to 35 kK. The first NO3? transition at 32.5 kK is assigned as 1A ← 1A based on its linear polarization and sign of rotational strength. The d-d transitions are assigned in the context of D3 symmetry and reveal a small negative crystal field parameter k, consistent with theoretical prediction. A positive R for all d-d transitions is found to be associated with the Λ configuration for all of the complex ions, by correlation with the crystal and solution circular dichroism of Ru(en)32+.  相似文献   

20.
Designing active and stable oxygen evolution reaction (OER) catalysts are vitally important to various energy conversion devices. Herein, we introduce elements Ni and Mn into (Co)tet(Co2)octO4 nanosheets (NSs) at fixed geometrical sites, including Mnoct, Nioct, and Nitet, to optimize the initial geometrical structure and modulate the CoCo2O4 surface from oxygen-excess to oxygen-deficiency. The pristine (Ni,Mn)-(Co)tet(Co2)octO4 NSs shows excellent OER activity with an overpotential of 281.6 mV at a current density of 10 mA cm−2. Moreover, without damaging their initial activity, the activated (Act)-(Ni,Mn)-(Co)tet(Co2)octO4 NSs after surface reconstruction exhibit long-term stability of 100 h under 10 mA cm−2, 50 mA cm−2, or even 100 mA cm−2. The optimal balance between electroactivity and stability leads to remarkable OER performances, providing a pivotal guideline for designing ideal electrocatalysts and inspiring more works to focus on the dynamic change of each occupation site component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号