首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Within the framework of the density functional theory (DFT), the electronic structure of monooxodioxovanadium functional groups in tetrahedral coordination, which model the active centers (ACs) of fine supported catalysts V2O5/SiO2 and V2O5/TiO2, has been analyzed. The optimal structures of three ACs as possible models of monomeric and polymeric oxovanadium forms on the carriers with low vanadium content were determined. The modified DFT method involving the time dependence of Kohn-Sham equation (TDDFT) was used for the adopted AC models to calculate the energies of the excited states, and optical spectra of the absorption in 25000–60000 cm?1 region were reconstructed on their base. The spectrum in this region is due to O → V charge transfer. The features of electronic spectra with the charge transfer for V2O5/SiO2 and V2O5/TiO2 catalysts and the vibrational spectra of three AC models corresponding to the monomeric and dimeric oxovanadium forms of the supported catalysts V2O5/SiO2 and V2O5/TiO2 were defined. The detailed interpretation of normal vibration frequencies is given. The frequencies typical of the monomeric and dimeric oxovanadium forms on the carrier surface were identified.  相似文献   

2.
The calculations of the electronic structure of layered polyvanadate K2V3O8 were made employing the spin-polarized tight-binding LMTO method. Calculated magnetic moment for K4V6O16 compound phase equals 1.97 μB. V-O interactions were established to be dominating in the chemical bonding generation in this polyvanadate according to the estimated crystal orbital overlap population. The covalent bonds V(2)-V(2) in V(2)2O7 groups and electron density localization on vanadium atoms in isolated pyramids V(1)O5 were found.  相似文献   

3.
Large-scale Li1+x V3O8 nanobelts were successfully fabricated using filter paper as deposition substrate through a simple surface sol–gel method. The nanobelts were as long as tens of micrometers with widths of 0.4–1.0 μm and thickness of 50–100 nm. The nanobelts were characterized by X-ray diffration (XRD), Fourier infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM). The formation mechanism of the nanobelts was investigated, showing that the morphology of the nanobelts is mainly determined by the calcination temperature. Electrochemical properties of the Li1+x V3O8 nanobelts were characterized by charge–discharge experiments, and the results demonstrate that the Li1+x V3O8 nanobelts exhibit a high discharge capacity (278 mAh g−1) and excellent cycling stability.  相似文献   

4.
Solid solution phases of a formula Fe8V10W16–xMoxO85 where 0≤x≤4, have been obtained, possessing a structure of the compound Fe8V10W16O85. It was found on the base of XRD and DTA investigations that these solution phases melted incongruently, with increasing the value of x, in the temperature range from 1108 (x=0) to 1083 K (x=4) depositing Fe2WO6 and WO3. The increase of the Mo6+ ions content in the crystal lattice of Fe8V10W16O85 causes the lattice parameters a=b contraction with cbeing almost constant. IR spectra of the Fe8V10W16–xMoxO85 solid solution phases have been recorded.  相似文献   

5.
Summary. The nitration of aromatic compounds was carried out in the presence of divanadium-substituted molybdophosphoric acid, H5PMo10V2O40, as catalyst and a mixture of nitric acid and acetic anhydride as nitrating agent. In the presence of this heteropolyacid the ortho- and para-nitro compounds were obtained in good to excellent yields under mild reaction conditions.  相似文献   

6.
One-dimensional (1D) submicron-belts of V2O5 have been prepared by a sol–gel route using V2O5, H2O2 and aniline as starting materials. Thermogravimetric and differential thermal analysis, X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy were employed to characterize the samples. Electrochemical behaviors as cathode material in rechargeable lithium-ion batteries were investigated by galvanostatic charge–discharge measurement and cyclic voltammeter. The results showed that the synthesized V2O5 appeared to be submicron-belts and orthorhombic structure. The V2O5 submicron-belts exhibited a high initial discharge capacity of 346 mAh/g and stayed 240 mAh/g after 20 cycles at 0.1 C discharge rate in the potential region 1.8–4.0 V.  相似文献   

7.
Conducting polyaniline/Cobaltosic oxide (PANI/Co3O4) composites were synthesized for the first time, by in situ deposition technique in the presence of hydrochloric acid (HCl) as a dopant by adding the fine grade powder (an average particle size of approximately 80 nm) of Co3O4 into the polymerization reaction mixture of aniline. The composites obtained were characterized by infrared spectra (IR) and X-ray diffraction (XRD). The composition and the thermal stability of the composites were investigated by TG-DTG. The results suggest that the thermal stability of the composites is higher than that of the pure PANI. The improvement in the thermal stability for the composites is attributed to the interaction between PANI and nano-Co3O4.  相似文献   

8.
Thermal properties of Co2FeV3O11 have been reinvestigated. It has been proved that this compound does not exhibit polymorphism. It melts incongruently at the temperature of 770±5°C and the phase with lyonsite type structure is the solid product of this melting. Phase relations in the whole subsolidus area of the CoO–V2O5–Fe2O3 system have been determined. The solidus area projection onto the component concentration triangle plane of this system has been constructed using the DTA and XRD methods. 15 subsidiary subsystems can be distinguished in this system.  相似文献   

9.
To enhance film conformality together with electrical property suitable for dynamic random access memory (DRAM) capacitor dielectric, the effects of oxidant and post heat treatment were investigated on aluminum and titanium oxide (Al2O3–TiO2) bilayer (ATO) thin film formed by atomic layer deposition method. For the conformal deposition of Al2O3 thin film, the O3 oxidant required a higher deposition temperature, more than 450 °C, while H2O or combined oxygen sources (H2O+O3) needed a wide range of deposition temperatures ranging from 250 to 450 °C. Conformal deposition of the TiO2 thin film was achieved at around 325 °C regardless of the oxidants. The charge storage capacitance, measured from the ATO bilayer (4 nm Al2O3 and 2 nm TiO2) deposited at 450 °C for Al2O3 and 325 °C for TiO2 with O3 oxidant on the phosphine-doped poly silicon trench, showed about 15% higher value than that of 5 nm Al2O3 single layer thin film without any increase of leakage current. To maintain the improved electrical property of the ATO bilayer for DRAM application, such as enhanced charge capacitance without increase of leakage current, upper electrode materials and post heat treatments after electrode formation must be selected carefully. Dedicated to Professor Su-Il Pyun on the occasion of his 65th birthday.  相似文献   

10.
Vibrational spectra of finely divided amorphous CsHSO4,Cs5H3(SO4)4 · H2O, and composites based on these are measured and analyzed. An analysis of the spectra indicates the occurrence of substantial changes in the system of hydrogen bonds and in the spectral range of the sulfate group of acid sulfates in the composites. Structural dynamics of the SO4 tetrahedrons is in full conformance with protonic conduction and the data of x-ray diffraction analyses accompanied by differential scanning calorimetry. It is shown that mobility of protons in the composites increases. A mechanism of the formation of the composites and their conduction is proposed.__________Translated from Elektrokhimiya, Vol. 41, No. 5, 2005, pp. 640–645.Original Russian Text Copyright © 2005 by Ponomareva, Lavrova, Burgina.  相似文献   

11.
A pretreatment-transient reaction product analysis method was applied to study the reactions and average composition of the possible surface intermediate species in selective catalytic reduction with ethylene of NO x over Co-ZSM-5. The reactions of the surface species, formed by the pretreatment of Co-ZSM-5 in a NO/C2H4/O2 mixture at 275°C, with the NO/O2 flow produced much more N2 than that with the individual NO or O2 flow. The similarity of N2/CO x /H2O product distribution generated from the above surface species-NO/O2 reactions and that from the normal NO/C2H4/O2 flow reactions implies that the surface species NC a O b H c formed in the three-component pretreatment process is very likely the primary intermediate surface species generated during the real flow reactions. The in situ FT-IR (DRIFT) spectroscopy measurements of the surface species support the above conclusion.  相似文献   

12.
New composite cathode materials xLiMn2O4/(1 ? x) LiCoO2(x = 0.7, 0.6, 0.5 и 0.4) were obtained by mechanical activation. According to scanning electron microscopy data, the process was accompanied by pronounced dispersion and fine mixing of the initial components. In the course of the preparation and electrochemical cycling of the composites, LiMn2O4 and LiCoO2 partially reacted, leading to the replacement of manganese with cobalt in the structure of spinel, which was detected by powder X-ray diffraction (XRD), IR and X-ray photoelectron spectroscopy (XPS), and cyclic chronopotentiometry. The specific discharge capacity of composites was ~100 mAh/g.  相似文献   

13.
In this work we study the conductivity properties of poly-o-methoxyaniline/V2O5 intercalation compounds obtained through intercalative polymerization of o-methoxyaniline with V2O5·nH2O in hydrogel form and by reacting directly with V2O5 film in de-hydrated form (xerogel). These new compounds were characterized using Fourier-transform infrared and ultra-violet/visible spectroscopies, electron paramagnetic resonance, elemental analysis (C, N, H), thermogravimetric analysis, scanning electron microscopy, dc-conductivity and powder X-ray diffraction. For samples formed from V2O5 xerogel in film form, an increase in dc-conductivity and a decrease in the thermal activation energy in comparison with pure matrix was observed. The increase in conductivity is attributed to an increase of carrier density in the vanadium oxide lattice and the contribution of polarons from the polymer. On the other hand, for the intercalation compound obtained with V2O5·nH2O in hydrogel form presents a very low room temperature conductivity value. The decrease in conductivity is due to the lack of connectivity of the various parts that compose the material.  相似文献   

14.
Solid-phase interactions in the V2O5-Ta2O5-MoO3 system were studied. The formation of com- pounds TaVO5 and VTa9O25 in the V2O5-Ta2O5 binary system was verified. Tetragonal VTa9O25-base solid solutions of the general formula Ta5 + 4x V5 − 4x O25 (x = 0.25–1) and TaVO5-base solid solutions of the general formula Ta x Mo1 − x V2 − x O8 − 3x (x = 0.625–1) were found to form. Subsolidus phase equilibria in the V2O5-Ta2O5-MoO3 were determined.  相似文献   

15.
Thick aluminum oxide films are prepared on Al plates by anodizing. On the ceramic surface thus obtained a very thin Ag film is deposited via vacuum thermal evaporation. The Ag/Al2O3/Al samples prepared are irradiated by Nd:YAG laser through a suitable metal mask in order to remove the top metal film in the exposed areas. Thus, a negative silver image of the copied mask is obtained. Further, the samples are processed in Ni electroless chemical bath activated by the rest of silver. All processing steps are studied by scanning electron microscopy (SEM). EDS X-ray mapping is applied to study the final distribution of Al and Ni in the processed areas. In addition, the DC conductivity of the fabricated Ni wires obtained is measured. The proposed new method for selective chemical deposition of electroconductive Ni onto laser microstructured Ag/Al2O3/Al samples is simple, versatile and not restricted to the metal/ceramic system studied as well as to the electroless deposited metal.  相似文献   

16.
Fe3O4 nanorods and Fe2O3 nanowires have been synthesized through a simple thermal oxide reaction of Fe with C2H2O4 solution at 200–600°C for 1 h in the air. The morphology and structure of Fe3O4 nanorods and Fe2O3 nanowires were detected with powder X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The influence of temperature on the morphology development was experimentally investigated. The results show that the polycrystals Fe3O4 nanorods with cubic structure and the average diameter of 0.5–0.8 μm grow after reaction at 200–500°C for 1 h in the air. When the temperature was 600°C, the samples completely became Fe2O3 nanowires with hexagonal structure. It was found that C2H2O4 molecules had a significant effect on the formation of Fe3O4 nanorods. A possible mechanism was also proposed to account for the growth of these Fe3O4 nanorods. Supported by the Fund of Weinan Teacher’s University (Grant No. 08YKZ008), the National Natural Science Foundation of China (Grant No. 20573072) and the Doctoral Fund of Ministry of Education of China (Grant No. 20060718010)  相似文献   

17.
Thick film of nanocrystalline Co0.8Ni0.2Fe2O4 was obtained by sol–gel citrate method for gas sensing application. The synthesized powder was characterized by X-ray diffraction (XRD) and transmission electron microscopy. The XRD pattern shows spinel type structure of Co0.8Ni0.2Fe2O4. XRD of Co0.8Ni0.2Fe2O4 revels formation of solid solution with average grain size of about 30 nm. From gas sensing properties it observed that nickel doping improves the sensor response and selectivity towards ammonia gas and very low response to LPG, CO, and H2S at 280 °C. Furthermore, incorporation of Pd improves the sensor response and stability of ammonia gas and reduced the operating temperature upto 210 °C. The sensor is a promising candidate for practical detector of ammonia.  相似文献   

18.
The effects of H2 and H2 + O2 gas mixtures of varying composition on the state of the surface of the Pt/MoO3 model catalyst prepared by vacuum deposition of platinum on oxidized molybdenum foil were investigated by X-ray photoelectron spectroscopy (XPS) at room temperature and a pressure of 5–150 Torr. For samples with a large Pt/Mo ratio, the XP spectrum of large platinum particles showed that the effect of hydrogen-containing mixtures on the catalyst was accompanied by the reduction of molybdenum oxide. This effect results from the activation of molecular hydrogen due to the dissociation on platinum particles and subsequent spill-over of hydrogen atoms on the support. The effect was not observed at low platinum contents in the model catalyst (i.e., for small Pt particles). It is assumed for the catalyst that the loss of its hydrogen-activating ability is a consequence of the formation of platinum hydride. Possible participation of platinum hydride as intermediate in hydrogen oxidation to H2O2 is discussed.  相似文献   

19.
In this work the synthesis of CoFe2O4-SiO2 and NiFe2O4-SiO2 nanocomposites was studied via the sol–gel method, using the polymerized complex route. The polymerized precursors obtained by the reaction of citric acid, ethylene glycol, tetraethylorthosilicate, ferric nitrate, and cobalt nitrate or nickel chloride were characterized by nuclear magnetic resonance (NMR) and infrared (IR) spectroscopy. NMR and IR spectra of the precursors, without and with metallic ions, show the formation of polymeric chains with ester and ether groups and complexes of metal-polymeric precursor. The nanocomposites were obtained by the thermal decomposition of the organic fraction and characterized by X-ray diffraction (XRD) and vibrating sample magnetometry (VSM). XRD patterns show the formation of CoFe2O4 and NiFe2O4 in an amorphous silica matrix above 400 °C in both cases. When the calcination temperature was 800 °C the particle size of the crystalline phases, calculated using the Scherrer equation, reached ∼35 nm for the two oxides. VSM plots show the ferrimagnetic behavior that is expected for this type of magnetic material; the magnetization at 12.5 KOe of the CoFe2O4-SiO2 and NiFe2O4-SiO2 compounds was 29.5 and 17.4 emu/g, respectively, for samples treated at 800 °C.  相似文献   

20.
The Wiener index of a graph G is defined as , where V(G) is the set of all vertices of G and for denotes the length of a minimal path between x and y. A C 4 C 8 net is a trivalent decoration made by alternating squares C 4 and octagons C 8. It can cover either a cylinder or a torus. In this paper, an algorithm for computing the distance matrix of a C 4 C 8(R) nanotorus T = T[p,q] is given. Using this matrix, the Wiener index of T is computed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号